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hanisms by Appli
ation Memory A

essPatternPubli
ation No.Kartik Kandadai Agaram, Ph.D.The University of Texas at Austin, 2007Supervisor: Stephen W. Ke
kler
Modern 
omputer systems spend a substantial fra
tion of their running timewaiting for data from memory. While prefet
hing has been a promising avenueof resear
h for redu
ing and tolerating laten
ies to memory, it has also been a
hallenge to implement. This 
hallenge exists largely be
ause of the growing
omplexity of memory hierar
hies and the wide variety of appli
ation behav-iors. In this dissertation we propose a new methodology that emphasizes de-
omposing 
omplex behavior at the appli
ation level into regular 
omponentsthat are intelligible at a high level to the ar
hite
t.This dissertation is divided into three stages. In the �rst, we buildtools to help de
ompose appli
ation behavior by data stru
ture and phase,and use these tools to 
reate a ri
her pi
ture of appli
ation behavior than with
onventional simulation tools, yielding 
ompressed summaries of dominantviii



a

ess patterns. The variety of a

ess patterns drives the next stage: designof a prefet
h system that improves on the state of the art.Every prefet
hing system must make low-overhead de
isions on whatto prefet
h, when to prefet
h it, and where to store prefet
hed data. Visualiz-ing appli
ation a

ess patterns allows us to arti
ulate the subtleties in makingthese de
isions and the many ways that a me
hanism that improves one de-
ision for one set of appli
ations may degrade the quality of another de
isionfor a di�erent set. Our insights lead us to a new system 
alled TwoStep witha small set of independent but synergisti
 me
hanisms.In the third stage we perform a detailed evaluation of TwoStep. We�nd that while it outperforms past approa
hes for the most irregular appli
a-tions in our ben
hmark suite, it is unable to improve on the speedups for moreregular appli
ations. Understanding why leads to an improved understandingof two general 
ategories of prefet
h te
hniques. Prefet
hing 
an either lookba
k at past history or look forward by pre
omputing an appli
ation's futurerequirements. Appli
ations with a low 
ompute-a

ess ratio 
an bene�t fromhistory-based prefet
hing if their a

ess pattern is not too irregular. Appli
a-tions with irregular a

ess patterns may bene�t from pre
omputation-basedprefet
hing, as long as their 
ompute-a

ess ratio is not too low.
ix
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Chapter 1Introdu
tion
For about two de
ades starting in the early '80s, pro
essor 
lo
k speedimproved by approximately 50% per year, while DRAM speed only improvedat about 7% per year. As a result, the speed gap between pro
essor and mainmemory 
y
le time doubled approximately every 6.2 years [8, 32℄. Pro
essorspeeds have sin
e largely stopped their exponential growth, but modern sys-tems must still deal with laten
ies to main memory of up to 2000 
y
les.Ca
he hierar
hies have grown in importan
e as a way to mitigate thee�e
ts of this speed gap [46, 73, 87{89℄; today's mi
ropro
essors often havethree levels of 
a
he memories, with ea
h level �ltering the address stream seenby lower levels. Ca
hes however make assumptions of spatial and temporalmemory lo
ality that are not always valid, and many programs still spend asubstantial fra
tion of their time stalling for memory.The problem of in
reasing memory laten
y has 
onsumed mu
h resear
he�ort, and yielded signi�
ant new advan
es. Prior work in memory-systemmay be 
ategorized into two 
lasses: laten
y avoidan
e, and laten
y toleran
e.Laten
y avoidan
e te
hniques attempt to redu
e average memory a

ess time(AMAT) for a set of 
ommon a

ess patterns. Su
h te
hniques in
lude among1



others multi-word 
a
he-lines to exploit spatial lo
ality, vi
tim bu�ers, andskewed-asso
iative 
a
hes to mitigate 
on
i
t misses [42, 80℄.Laten
y toleran
e te
hniques try to �nd independent useful work todo while they wait for long-laten
y memory a

ess to 
omplete. Examples oflaten
y toleran
e are pipelined memories and banked stru
tures that 
an bea

essed in parallel [15℄, out-of-order pro
essors and non-blo
king 
a
hes todis
over lo
al parallelism in a serial representation of software [4, 18, 39℄, andmore global uses of parallelism su
h as multi-threading [48℄.Prior work has also emphasized a spe
i�
 sub-
ategory of laten
y toler-an
e te
hnique. S
heduling te
hniques attempt to neutralize AMAT by usingthe various levels of the memory hierar
hy as staging stations for the e�e
tivetransfer of useful data to the pro
essor. They in
lude instru
tion s
hedulingfor load laten
ies and software-pipelining in the 
ompiler [58, 65℄, s
hedulinga

esses to DRAM in hardware [37℄, a variety of prefet
h te
hniques in softwareand hardware, and te
hniques su
h as read-miss 
lustering [69℄.In spite of these advan
es, the memory system 
ontinues to be a majorbottlene
k to performan
e while the variety of appli
ations has 
ontinued togrow. While the above te
hniques are often e�e
tive, their e�e
t varies for dif-ferent appli
ations, and it is hard to estimate a priori the intera
tion betweena spe
i�
 
lass of optimizations and a spe
i�
 appli
ation. As appli
ationsand the systems they run on grow more 
omplex, it be
omes more diÆ
ultto determine potential sour
es of ineÆ
ien
y and mismat
h between the two.Given the requirement to handle a variety of appli
ation workloads, s
heduling2
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}

if (inst == mop) {
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struct foo bar ;
void main () {
      for (i = 0; i < 10; ++i) {
            f2 = malloc (struct foo) ;

}
       }

            .....
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struct foo bar ;

void main () {

        for (i = 0; i < 10; ++i) {

       FILE.print ("bar", bar, sizeof(bar)) ;

              PTR = f2 ;

              asm("mop") ;
              ...........
        }
}

              f2 = malloc(struct foo) ;

              NAME = "f2" ;

              SIZE = sizeof(f2) ;

       asm ("mop") ;

Figure 1.1: DTra
k tool
hainpromises the greatest 
exibility at runtime in adapting to the needs of di�erentprograms without dilating 
riti
al paths in a memory a

ess.In this dissertation we perform a detailed appli
ation 
hara
terizationthat de
omposes program behavior by data stru
ture and phase. We summa-rize the ri
h pi
ture provided by su
h data into dominant a

ess patterns fordi�erent phases in ea
h appli
ation. We then fo
us on the irregular appli
a-tions that are 
hallenging for prior work and des
ribe some key properties ofthese programs. These key properties then drive the next phase: the design ofa novel prefet
hing mi
roar
hite
ture 
alled TwoStep. The rest of this 
hapteroutlines this pro
ess in greater detail.1.1 Detailed appli
ation 
hara
terization: data stru
-tures and phasesUnderstanding how appli
ations use the memory system is importantto at least three groups: (1) system designers who 
an apply insights intomemory system usage to improve hardware and software memory optimiza-3



tion te
hniques, (2) appli
ation writers who 
an understand how their programuses the memory system and optimize for better lo
ality, and (3) ben
hmarkdevelopers who want to ensure that the diverse patterns of behavior in real-isti
 appli
ations are represented. While many tools have been developed toanalyze memory behavior [53, 60, 63, 96℄, none give insight into the behavior ofindividual data stru
tures within a program. Our tool | DTra
k | gathersmemory system statisti
s on a per data stru
ture basis, to help identify thosedata stru
tures that have the strongest in
uen
e on performan
e and to o�erinsight into their size and a

ess patterns.Figure 1.1 outlines the stru
ture of the DTra
k tool
hain. DTra
k 
on-sists of a C-to-C 
ompiler that automati
ally instruments variable allo
ationsin programs and a detailed timing simulator that 
onsumes this instrumen-tation. This 
ombination yields a tool that generates data pro�les - detailedbreakdowns of 
a
he misses by the di�erent high-level data stru
tures in thesour
e 
ode. In our experiments with DTra
k, we measure the distributionof misses in major data stru
tures, the impa
t of these misses on total 
y
le
ount and on time spent stalling in the pipeline.Given this data pro�le, we then manually 
ombine it with a 
onven-tional 
ode pro�le to determine the dominant a

ess patterns for ea
h datastru
ture. Figure 1.2 summarizes the a

ess patterns of three representativeappli
ations as the manner in whi
h the major loops traverse the major datastru
tures. Sin
e most 
a
he misses in these programs o

ur within these loops,we 
an fo
us on them and treat the entire appli
ation as simply a sequen
e of4



I. 179.arti = i+1 {f1[i℄} i = i+1 {bu[i℄}a) b)II. 181.m
fi = i+1 {node[i℄} node = DFS(node) {node->
hildnode->parentnode->siblingnode->prevSibling}a) b)III. 300.twolfi = rand() {t1 = b[
[i℄->
blo
k℄t2 = t1->tile->termt3 = n[t2->net℄}Figure 1.2: A

ess patterns of major loops: the sequen
e of obje
ts tou
hedin ea
h iteration. The expression outside the body shows how the indu
tionvariable 
hanges for ea
h loop (DFS denotes depth-�rst traversal); the bodyenumerates important loads dependent on the indu
tion variable.
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iterations from its major loops. The major loops in all our appli
ations havethe following key properties:� They exhibit a wide variety of a

ess patterns, both between di�erentappli
ations and within some appli
ations.� While a

ess patterns 
an be very di�erent in di�erent loops, ea
h loop
an be summarized in a symboli
 manner like the examples in the pre-vious se
tion.� Ea
h loop iteration performs a series of memory a

esses that are often
hained together by data and 
ontrol dependen
es.� Even though individual loop footprints 
an far ex
eed 
onventional 
a
he
apa
ities, the footprint of ea
h individual loop iteration is small ando

upies just a few 
a
helines of a normal level-1 data (DL1) 
a
he.� Most of the hard 
a
he misses o

ur on the �rst a

ess to an obje
t in aloop iteration.All but the last of these points are 
onventional wisdom; our 
hara
teriza-tion helped us to quantify their e�e
ts, and to fo
us our attention on theseparti
ular properties.1.2 Summary of prior approa
hesNumerous prefet
hing te
hniques have been proposed in the litera-ture, using both software and hardware, and initiating both single short-range6



prefet
hes and long-range sequen
es of prefet
hes at a time. Purely softwareprefet
hing, using the 
ompiler to strategi
ally pla
e prefet
h instru
tions inan appli
ation's instru
tion stream, is a 
ommon approa
h [13, 59℄. However,it is often hard for the 
ompiler to stati
ally pla
e a prefet
h the right distan
ebefore its use. If the prefet
h is too 
lose to its use, its laten
y is not entirelyoverlapped; if the prefet
h is too far, the prefet
h is likely to pollute the 
a
heand itself be evi
ted before use.Prefet
hing with hardware support provides greater 
exibility at run-time in modulating the sla
k between prefet
h and use based on appli
ationneeds. Prior studies have resulted in many su
h prefet
hing te
hniques, �rstissuing prefet
hes one at a time, either under 
ompiler 
ontrol [13, 59℄ or usingspe
ial hardware that is triggered on spe
i�
 events su
h as 
a
he a

esses [87℄,
a
he misses [16, 41℄ and dead blo
k spe
ulation [49℄.Under the pressure of growing laten
ies to main memory, re
ent workhas fo
ussed on ways to issue systems of prefet
hes at a time. The sear
h forways to determine sequen
es of addresses to prefet
h has pro
eeded in twolargely independent dire
tions driven by 
on
i
ting appli
ation requirements.The �rst 
onsists of using prior history in an appli
ation's exe
ution to spe
u-latively sele
t systems of prefet
hes, expressed either as a region of the addressspa
e [55, 99℄ or as an aÆne fun
tion [43, 85℄.The se
ond dire
tion 
onsists of pre
omputation - 
reating a prefet
hthread in either hardware or software that runs ahead of the appli
ation anddetermines what to prefet
h [11, 66, 93, 103, 105℄. This pre
omputation may7




ome from running spe
ial kernel programs, 
opies of the appli
ation undervarious spe
ulative modes, or dynami
ally generated sequen
es of instru
tions.Both approa
hes have drawba
ks. History-based approa
hes are unable to gen-erate a

urate prefet
hes in the presen
e of arbitrarily 
omplex a

ess patterns.On the other hand, open problems in pre
omputation-based approa
hes arelow-overhead throttling to avoid 
a
he pollution when the prefet
h thread runstoo far ahead, and prioritizing between independent prefet
hes issued by theprefet
h thread.Summary of drawba
ks: The state of the art in prefet
h te
hniques hasseveral major limitations; the major de
isions of what to prefet
h, when toprefet
h it and where to prefet
h to remain 
hallenges in their most generalsetting. First, de
iding what to prefet
h is a 
hallenge for irregular programsthat interleave spatial a

ess and pointer dereferen
e in 
omplex ways, andmodern prefet
h te
hniques are often better tuned for one of those a

ess pat-terns than others, su
h as prefet
hing arrays or 
hasing pointers. Appli
ationswhose a

ess patterns are too 
omplex for 
urrent approa
hes are also oftenthe ones with the worst baseline performan
e and therefore most in need ofimprovement. They are also unlikely to fade in importan
e; 
urrent trends ofgrowing appli
ation footprint, in
reasing software 
omplexity and the need forgreater 
exibility at deployment-time have made the use of pointers in
reas-ingly 
ommon [10, 67, 72℄.Se
ond, me
hanisms that improve prefet
h a

ura
y for one set of appli-8
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Figure 1.3: The TwoStep prefet
hing system
ations often end up 
ausing tighter timing 
onstraints for another set resultingin prefet
hes that are either initiated too late to be e�e
tive or those that enterthe 
a
he too early and pollute it.Finally, the greater sensitivity of the DL1 to pollution has resultedin most approa
hes prefet
hing ex
lusively to the L2. We now outline ourapproa
h to address these drawba
ks, driving our study with a detailed 
har-a
terization of appli
ation 
hara
teristi
s.1.3 TwoStep: Mi
roar
hite
ture and 
ompiler forpre
omputation-based prefet
hingThe 
ompeting advantages of history- and pre
omputation-based prefet
h-ing are largely 
omplementary. Rather than 
hoose between the two, we9




all for a synthesis driven by appli
ation 
hara
teristi
s. Our approa
h isto sele
t between history- or pre
omputation-based prefet
hing depending onwhether the appli
ation is respe
tively more likely to be 
onstrained by MLPor prefet
h a

ura
y, using the twin metri
s of 
omputation per memory a
-
ess and a

ess-pattern irregularity. Our results show that these metri
s aree�e
tive at predi
ting whi
h appli
ations will bene�t from history-based andwhi
h from pre
omputation-based prefet
hing.We begin our design by fo
ussing on the 
hallenges posed by irreg-ular programs and use the above analysis to guide the design of a novelpre
omputation-based prefet
hing system - TwoStep. Our design (Figure 1.3)
onsists of a stati
ally-generated prefet
h program that exe
utes on a pro-grammable prefet
h 
ontroller. Our prefet
h programs are powerful enough toen
apsulate strided, pointer and index-array a

ess. This allows us to 
overthe broad variety of a

ess patterns. In order to minimize laten
y betweendependent prefet
hes, we pla
e the prefet
h 
ontroller in the L2. In order toavoid pollution in the DL1 we push ea
h prefet
h from L2 to a FIFO betweenL2 and DL1. Prefet
h 
ulminates in the movement of a �xed number of 
a
he-lines into the level-1 data (DL1) 
a
he. Sin
e the fo
us of TwoStep prefet
hingis on the �rst a

ess to ea
h obje
t in a loop, this movement is or
hestrated byan ISA enhan
ement we 
all the Pull instru
tion, inserted at the start of ea
hloop iteration in order to bring into the DL1 the 
a
he-lines that 
onstitutethe working set of that iteration. Sin
e loop iteration footprint is low, pollu-tion in the DL1 due to o

asionally ina

urate prefet
hes is bounded. Finally,10



the presen
e of the FIFO and Pull instru
tions makes it easy to throttle theprefet
h thread | the prefet
h program stalls when the FIFO is full. Thislightweight me
hanism for throttling avoids polluting the L2.We implement a 
ompiler for TwoStep to automate the generation ofprefet
h kernels from appli
ation sour
e 
ode. Our 
ompiler improves on thestate of the art [47℄ by requiring less pro�le information (iteration 
ounts forloops only) and by performing a more aggressive sear
h of the state spa
e ofloop 
luster 
ombinations to sele
t the most favorable loops. The 
ombinationof 
ompiler support and these mi
roar
hite
tural me
hanisms provides e�e
-tive prefet
hing for irregular appli
ations, in
luding several that have been
hallenging to prior work.However, 
omparisons with Guided Region Prefet
hing [99℄ show thatpre
omputation fails to a
hieve as mu
h bene�t on more regular appli
ationswith spatial lo
ality. A detailed analysis reveals that the trends shown bythe two 
ompeting te
hniques are representative of the more general 
lassesthey belong to: ba
kward-looking history-based prefet
hing vs forward-lookingpre
omputation-based prefet
hing. History-based prefet
hing 
onsists of tra
k-ing the history of the address stream for an appli
ation and making predi
-tions based on the assumption that future behavior will be similar to the past.Pre
omputation-based prefet
hing, on the other hand, does not make this as-sumption and instead expli
itly pre
omputes the appli
ation's future needs.We �nd that appli
ation aÆnity for one 
lass or the other is de
idedby two major properties: a

ess pattern regularity and 
omputation per mem-11



ory a

ess. Appli
ations with irregular a

ess patterns will 
learly have highaÆnities for history-based prefet
hing. This is not surprising; regular a

esspatterns are easier to predi
t based on knowledge of the past address stream.Conversely, we expe
t irregular appli
ations to prefer pre
omputation-basedprefet
hing. More surprising, however, appli
ations with irregular a

ess pat-terns require more 
omputation per memory a

ess in order to bene�t frompre
omputation-based prefet
hing. The greater prevalen
e of dependen
esand sequentialization 
auses poor utilization of prefet
h bandwidth and makesthem more sensitive to the 
riti
al path in a loop.When the memory footprint of a loop exhibits signi�
ant lo
ality, history-based prefet
hing 
an issue prefet
hes in parallel and tolerate mu
h `tighter'loops with less 
omputation per memory a

ess. However, su
h approa
hesfail to bene�t appli
ations with low spatial lo
ality, and a

urate prefet
hingrequires a pre
omputation thread to run ahead of the main program gener-ating prefet
hes. This approa
h is however 
onstrained in its memory-levelparallelism, and as a result 
annot be applied to loops with low levels of 
om-putation per memory a

ess. This analysis of the state spa
e provides thebasi
 intuition behind the 
omplementary nature of these two 
ategories ofprefet
hing. Di�erent loops in an appli
ation require either one or the other.As a result, 
ombining region prefet
hing with pre
omputation is a feasibleapproa
h, and we show that this 
ombination su

essfully a
hieves the best ofboth worlds.
12



1.4 Dissertation organization and 
ontributionsIn this dissertation we fo
us on the short
omings of past work in prefet
h-ing irregular memory-intensive appli
ations and try to remedy these short-
omings without 
ompromising hard-won improvements for other appli
ations.Our solution 
ombines features from software and hardware as well as lo
al andglobal approa
hes to prefet
hing. It 
onsists of a 
ompiler-generated prefet
hprogram that runs on a simple in-order programmable prefet
h 
ontroller inthe level-2 
a
he (L2) [99℄; a FIFO between the L2 and the level-1 data (DL1)
a
he that re
eives every prefet
h generated by the prefet
h 
ontroller [97℄;and ISA enhan
ements that provide hints on ea
h loop iteration in the mainprogram, in
luding its bounds, expe
ted footprint, and a

ess patterns. TheISA enhan
ements en
ode general properties about a program that 
ould beused by other te
hniques as well, and we show how to use them to or
hes-trate data transfer from FIFO to DL1. In parti
ular, this thesis makes three
ontributions:� A detailed 
hara
terization of irregular appli
ations to �rst establish thefeasibility of overlapping a

ess laten
y in them, and then glean someinsight into their a

ess patterns.� The design and evaluation of a prefet
h te
hnique 
alled TwoStep that
ombines the bene�ts of software and hardware as well as short- andlong-range prefet
hing.
13



� The insight that pre
omputation- and history-based prefet
hing are 
om-plementary approa
hes, with strengths and weaknesses in opposition toea
h other. Appli
ations with irregular a

ess patterns 
an bene�t fromthe the greater 
exibility of pre
omputation; appli
ations with low 
om-putation per memory a

ess require the better bandwidth eÆ
ien
y ofhistory-based approa
hes.The rest of this thesis is stru
tured as follows. In Chapter 2 we survey the priorliterature in several areas related to this dissertation. Chapter 3 des
ribes ourframework for de
omposing memory behavior by data stru
ture and summa-rizes the results of this study. Chapter 4 similarly des
ribes our framework forstudying phase behavior, with a novel adaptive algorithm to identify the bestgranularity at whi
h to view the phase behavior of an appli
ation. Chapter 5des
ribes our TwoStep prefet
h mi
roar
hite
ture and presents the results ofan initial study with hand-
rafted kernels. Chapter 6 des
ribes the TwoStep
ompiler and 
hara
terizes the state spa
e seen by it for our appli
ations.Chapter 7 puts mi
roar
hite
ture and 
ompiler together for a 
omprehensiveevaluation, quantifying the strengths and weaknesses of TwoStep 
ompared toother te
hniques that rely on spatial lo
ality, and showing that the two kindsof prefet
hing are amenable to re
ombination. Finally, Chapter 8 summarizesour insights from this work and identi�es areas for future study.
14



Chapter 2Ba
kground and related work
In this se
tion, we summarize the related work that we build upon inthis thesis. In tune with the stru
ture of the thesis, we break down our analysisinto three 
ategories - memory visualization and 
hara
terization tools relevantto DTra
k, the body of prefet
hing studies relevant to TwoStep, and �nallythe prior work in whole-program analysis, pointer analysis and sli
ing that theTwoStep 
ompiler is based on.2.1 Visualizing appli
ation memory behaviorSimulation is a 
ommon method of produ
ing aggregate memory statis-ti
s [1, 9, 33, 89℄. More sophisti
ated 
a
he memory behavior analysis toolshave been developed [53, 60, 61, 63, 64, 96℄, and this se
tion 
ompares DTra
kto this prior work. Our work di�ers from these tools in that we 
onsider pointerdata stru
tures in addition to arrays, and show that aggregate statisti
s ob-s
ure possible optimization opportunities revealed by phase behavior. Thisin
reased detail 
omes at a 
ost of in
reased simulation time.Most tools have fo
used on aggregate data stru
ture and pro
edure-level information for arrays [53, 60, 61℄. Lebe
k et al. [53℄ and Martonosi et15



al. [60℄ present data stru
ture and pro
edure level aggregate miss information,and 
lassify misses as 
ompulsory, 
apa
ity, and 
on
i
t. Both papers alsopresent a number of software optimizations for improving 
a
he performan
e.While these tools point users to the 
ode and arrays that 
ause problems, theyexamine the behavior of an array within the 
ontext of a single pro
edure,resulting in two weaknesses. First, be
ause they do not perform 
ross datastru
ture analysis, it is not dire
tly apparent from their aggregate data statis-ti
s whi
h data stru
tures interfere with themselves or with others. Se
ond,sin
e they do not perform 
ross-pro
edure analysis, optimizations 
hosen toimprove performan
e of one array/pro
edure 
ombination may diminish per-forman
e in another pro
edure. Finally, both tools handle only regular array-based data stru
tures rather than pointer-based data stru
tures. M
Kinleyand Temam analyze the 
omplementary dimension of inter-nest and intra-nestloop lo
ality [63, 64℄, but again 
onsider only arrays and aggregate informationbetween loop nests.2.2 Analyzing time-varying behaviorSeveral tools have studied time-varying behavior. The Ca
he Visual-ization Tool [96℄ demonstrates the time-varying behavior of arrays as theymar
h through the 
a
he. The graphi
al 
omponent of this tool 
olors 
a
he-lines a

ording to their lo
ality and misses by data stru
tures, so the user
an see whi
h 
a
he-lines 
ause 
on
i
t misses. This level of detail supportsanalyzing a single loop nest at a time, whereas we analyze data stru
ture16



phase behavior a
ross mu
h longer periods. Chilimbi et al. [20, 78℄ analyze
ompressed program tra
es, de
ompose them into hot data streams, and usethese hot data streams to drive layout and prefet
hing optimizations. This ap-proa
h of sear
hing for a

ess patterns a
ross the di�erent data stru
tures in aprogram is 
omplementary to ours, whi
h attempts to de
ompose appli
ationa

ess patterns by data stru
ture. We believe our approa
h is more e�e
tiveat providing intuitions about appli
ation behavior that are useful to humansin di�erent roles.More re
ently, several studies have used some form of 
ode signatureto dete
t phase boundaries. Basi
 Blo
k Ve
tors (BBVs) are 
urrently themost a

urate method to generate 
ode signatures, and several studies exploretheir uses in 
lustering phases and dete
ting phase transitions in an o�ine [83,84℄ and online [86℄ setting. One alternative to BBVs is the use of program
ounter or Extended Instru
tion Pointer Ve
tors (EIPVs) [6℄, whose meritshave been debated by Lau et al. [51℄. Another alternative 
onsists of morehigh-level metri
s based on 
ode stru
ture, su
h as register use ve
tors or loopve
tors [52℄. All these studies, however, sele
t an arbitrary sampling periodand use it for all the appli
ations they evaluate. In this study, we provide amore rigorous method to separately determine the 
orre
t sampling period forea
h appli
ation.Perhaps the most similar work to ours is the online phase dete
tor ofNagpurkar et al. [68℄. Their system maintains a 
urrent window of obje
treferen
es within a JVM and assesses the similarity of the re
ent referen
es17



in it to those in an older trailing window. Like our study they evaluate thee�e
t of window size (sampling interval) on phase dete
tion. While our studylooks for phases in �ne-grained behavioral statisti
s of an appli
ation, theystudy phase behavior in the fun
tional list of obje
t referen
es tou
hed by anappli
ation. The two approa
hes are 
omplementary.2.3 Prefet
hingPrefet
hing has been an important tool in 
ombating growing memorylaten
ies in both the 
ompiler and mi
roar
hite
ture, and as a result thereis a large body of resear
h in this area. We break it down into several 
ate-gories below, fo
ussing on important studies in ea
h and elaborating on theirrelationship with our s
heme.Spatial prefet
hing and stream bu�ers: The earliest systems performedprefet
hing for array-based numeri
al 
odes. Software-based solutions dete
tedarray referen
es and loop indu
tion variables to prefet
h a �xed number of iter-ations in advan
e for 
omplex loop nests [12, 59℄. These solutions were gearedtowards array-based appli
ations with a very di�erent patterns of behaviorfrom our fo
us in this work, and we do not 
onsider them further. The earliesthardware prefet
h systems systems simply brought in the next 
a
he-line on amiss [87℄. Developments and enhan
ements have pro
eeded along several di-re
tions. First, a variety of te
hniques have been studied for region prefet
hing,
ulminating in the work of Lin et al. [55℄. Se
ond, spatial hardware prefet
h-18



ers used stream bu�ers to avoid 
a
he pollution in the presen
e of ina

urateprefet
hes [42, 45, 71℄; we fo
us on two exemplars of the state of the art. Sher-wood and Calder [85℄ 
ouple stride predi
tion with stream bu�ers, while Hurand Lin [38℄ adaptively vary stream length at an appli
ation granularity. Ourme
hanism draws inspiration from stream bu�ers as a me
hanism to avoid
a
he pollution. However, stream bu�ers are inadequate to our needs for tworeasons. First, they lengthen the 
riti
al path of a normal 
a
he a

ess tosear
h a 
a
he and asso
iated stream bu�ers, either in series or parallel. Se
-ondly, the stream-bu�er approa
h to handling ina

ura
ies in predi
tion doesnot �t our model. Stream bu�ers 
an be seen as a 
onstantly evolving set ofhypotheses on the stream of addresses that a program needs. When one fails,the stream bu�er is simply 
ushed to make way for another hypothesis. Inthe 
ontext of irregular appli
ations, however, the 
ompiler-supplied hypoth-esis is a valuable resour
e and our me
hanism is able to tolerate momentaryina

ura
ies in the FIFO without needing to frequently 
ush it. While Hurand Lin do not spend time 
onstru
ting elaborate hypotheses, their approa
hfo
usses ex
lusively on spatial 
a
he misses, �nding short streams even in ir-regular programs. Our approa
h is 
omplementary, fo
ussing instead on themore diÆ
ult non-spatial 
a
he misses.Software prefet
hing by 
ompiler-inserted instru
tions: Based on ear-lier work on array-based programs, Lipasti et al. performed an early studyshowing that bene�ts 
ould be obtained by prefet
hing pointers passed as pa-19



rameters to fun
tion 
alls [56℄. Luk and Mowry identi�ed the main problemto over
ome in array-based prefet
hing: the presen
e of pointers introdu
es aserialization between prefet
hes, so that prior prefet
hes must return beforemore progress 
an be made [59℄. They performed a thorough analysis of the useof jump pointers to over
ome this serialization. Cahoon and M
Kinley builton the work of Luk and Mowry by performing interpro
edural data
ow anal-ysis in an obje
t-oriented environment with virtual-method 
alls [12℄. Thesestudies handled regular pointer-based 
odes su
h as linked-list and binary treetraversal with su

ess. However they are unable to adapt the sla
k given toprefet
hes at runtime.Hardware prefet
hing by dete
ting patterns in the address stream:Another line of prefet
hing studies add hardware enhan
ements to supportthe prefet
hing de
ision. A number of studies have found su

essively moresophisti
ated patterns to prefet
h by observing the patterns of an appli
a-tion's address stream. We note the progression of ideas from early studieson dete
ting variable-stride patterns su
h as by Chen and Baer [19℄, throughstudies on Markov prefet
hers that use 
a
he misses to trigger further 
a
he a
-
esses [5, 41, 77℄, �nally 
ulminating in the work of Ia
obovi
i et al. [40℄, whi
hpresents 
omplex stride-dete
tion hardware to tra
k and predi
t a variety ofaÆne a

ess patterns. Dead-blo
k 
orrelating prefet
hers are another devel-opment on this idea, triggering prefet
hes not on spe
i�
 
a
he misses, but onthe earlier spe
ulative evi
tion of 
a
he-lines [49℄. All these studies assume20



that there are patterns to be found in the address tra
e, and in pra
ti
e are atthe mer
y of pathologies of memory allo
ators. They also need 
a
he missesto perform prefet
hes, and are therefore self-limiting in the improvement they
an bring.Hardware-based pointer prefet
hing: Several studies have attempted tomodel pointers themselves rather than raw address streams. An early expo-nent was the study of jump pointers by Roth and Sohi [76℄, showing them tobe feasible for prefet
hing in both software using hand-
oded kernels and inhardware using a spe
ialized unit to 
onstru
t 
hains of jump pointers andstore them in the intersti
es of heap allo
ations. In spite of being amenableto implementation in hardware, jump pointer-based prefet
hing su�ers fromthe 
lassi
 problem of software prefet
hing - an inability to adaptively timeprefet
hes based on dynami
 
hanges to a program.Re
ent work on 
ontent-dire
ted prefet
hing emphasizes this aspe
t [3,23℄. These studies 
ontain a prefet
h me
hanism 
onsisting of a simple hard-ware unit that s
ans in
oming 
a
he-lines for pointers and initiates prefet
hesalong them. They also in
lude a reinfor
ement me
hanism that adaptivelyprunes pointer paths that a program does not use. This approa
h has twodrawba
ks. First, it addresses pointer and indire
t prefet
hes, but is unableto avoid spatial misses for obje
ts larger than a 
a
he-line. TwoStep is ableto handle arbitrary interleavings of regular and irregular types of a

ess. Se
-ond, like address-stream-based approa
hes des
ribed above, it relies on 
a
he21



misses to trigger prefet
hes albeit in a more eÆ
ient manner. TwoStep allowsthe prefet
h thread the opportunity to run ahead regardless of 
a
he missesor other pipeline state. As an extreme example, a low-ILP appli
ation with ahigh 
omputate-store ratio but irregular a

ess patterns would spend a signif-i
ant portion of its time stalling for memory in spite of su
h a pointer prefet
hsystem. TwoStep would however be able to stay ahead of the main programand avoid most DL1 misses.Programmable prefet
h engines: While the above pointer prefet
hingstudies 
ould get multiple iterations ahead of the main program, they werefo
ussed on pointers alone and unable to handle more sophisti
ated a

esspatterns 
ombining spatial and pointer a

ess. A 
ouple of re
ent studies haveaddressed this. Guided Region Prefet
hing by Wang et al. provides hints inload instru
tions that 
an permit the L2-based prefet
h engine to run aheadof the program [99℄. However, this work avoids pollution by a hard boundon the number of iterations the prefet
her 
an run ahead. The Push modelof Yang et al. adds engines at ea
h level in the 
a
he hierar
hy that ea
hexe
ute spe
ialized kernels to push data to the level above [102℄. Comparedto our work, that study has several di�eren
es. First, it is designed for purelypointer-based traversals and is unable to handle 
ombinations of spatial andpointer-based a

ess. Se
ond, it involves mu
h more hardware 
omplexityby adding engines at ea
h level of the memory hierar
hy, engines that aresupers
alar and implement 
omplex heuristi
s for prioritizing and throttling22



a

esses. The use of a FIFO serves to substantially simplify our design relativeto theirs.A third study with some similarity to our own is the programmableprefet
h engine of VanderWiel and Lilja [97℄. This study uses a prefet
h enginesimilar to ours that prefet
hes to both DL1 and L2. However, it avoids pollu-tion by using tags on 
a
he-lines (rather than on instru
tions as in TwoStep)to maintain a produ
er-
onsumer relationship between pro
essor and prefet
hengine. In spite of being programmable, this engine was designed for largelyarray-based 
odes, and used a simple intra-pro
edural analysis to generateprefet
h programs. TwoStep extends this approa
h to support irregular appli-
ations.Novel pro
essor ar
hite
tures with prefet
hing e�e
ts: The primaryar
hite
tural idea inspiring TwoStep was the de
oupled a

ess/exe
ute ar
hi-te
ture of Smith [90℄. We believe it is the work 
losest in spirit to ours, usingsoftware-
ontrolled queues to manage slip between exe
ution and memory-a

ess \streams". Designed in a very di�erent 
ontext, the motivation ofthis design was to sidestep the Flynn bottlene
k (approximating later super-s
alar designs) and to overlap multiple instru
tions with simple issue logi
(approximating out-of-order exe
ution). It is useful to enumerate the di�er-en
es between de
oupled ar
hite
ture and TwoStep. Compared to this earlystudy, we maintain an asymmetry between the two streams, relegating thea

ess stream to a purely performan
e-enhan
ing fun
tion and redu
ing the23



frequen
y of syn
hronization \handshakes" between the two streams.Several re
ent studies have made dramati
 
hanges in overall pro
es-sor mi
roar
hite
ture, resulting in prefet
hing e�e
ts among other bene�ts.The RAW ar
hite
ture reports substantial speedups for irregular appli
ationsusing a more expli
it or
hestration of data movement and with loss of 
om-patibility with existing programming models [94℄. Over 
ommon appli
ations- m
f and twolf - we show 
omparable improvements in TwoStep but with amore 
onventional ISA and software sta
k. Datas
alar and Slipstream pro-
essors simultaneously run a program on multiple pro
essors and 
ause it tospeed up on ea
h of them [11, 93℄. Runahead exe
ution is more parsimoniousand utilizes pro
essor resour
es to run in \spe
ulative" mode when it wouldotherwise be stalled [66℄. While runahead exe
ution has bene�ts beyond justprefet
hing, we note that like some of the hardware prefet
h s
hemes aboveit only performs prefet
hes during 
a
he misses, thereby being less eÆ
ient inoverlapping laten
y. It is also unlikely to be e�e
tive in prefet
hing serializedpointers sin
e a stall in one pointer would invalidate all 
omputations basedon it.Summary: As the above survey shows, TwoStep bene�ts from the lessonsof a large number of prior studies. Many of these studies share some pointsof similarity but make design de
isions that 
ause them to be ine�e
tive onirregular programs. The novel ar
hite
tures surveyed above yield some ofthe bene�ts of TwoStep but at greater 
ost or with a 
hange in programming24



model. A 
ommon thread among many prior studies is to use 
a
he miss eventsto trigger prefet
hes. Like the designers of dead-blo
k 
orrelation prefet
hing,we �nd this approa
h to be self-limiting [49℄.2.4 Sli
ing and whole-program analysisInterpro
edural or whole-program analysis has been the topi
 of mu
hresear
h attempting to improve its eÆ
ien
y in a variety of 
ontexts: pro-gramming languages with and without pointers [34, 35℄, automati
 paralleliza-tion [79℄, and a variety of spe
i�
 analyses su
h as 
onstant propagation [29℄,side-e�e
t analysis [21℄ and es
ape analysis [7, 26℄. Whole-program analysisand pointer analysis often have a symbioti
 relationship in the 
ontext of lan-guages with pointers like C [17℄; aggressive pointer analysis must ne
essarilybe a whole-program analysis, while other appli
ations of whole-program analy-sis often require points-to information. Again, mu
h e�ort has been expendedon the development of eÆ
ient algorithms for whole-program pointer analy-sis [24, 27℄.There has been relatively less work in sli
ing, with appli
ations largelyin the �eld of program-understanding [36, 50, 100℄. Our appli
ation of sli
ingis rather di�erent from this 
onventional use; while most sli
ing studies fo
uson �nding minimal sli
es while retaining full 
overage, our fo
us is on �ndingsparse regions in a sli
e that maximize the amount of 
omputation not in thesli
e. In parti
ular, full 
overage for pathologi
al 
ases is not a 
on
ern sin
ewe use sli
es for performan
e, not 
orre
tness. Also, while most sli
ing studies25



use a stati
 representation of program stru
ture, simply returning the set ofstati
 program statements that belong in a sli
e, our view is more orderedand 
ontext-sensitive: the 
ompiler must return a 
ontext-sensitive sequen
eof statement instan
es.2.5 Compiler support for pre
omputationCompilers for pre
omputation are based on program sli
ing and typ-i
ally operate either by post-
ompilation binary translation [54, 76, 77℄ or atruntime in a dynami
 
ompiler [104℄. Computing sli
es in hardware restri
tsthe s
ope of individual sli
es, while binary translation dete
ts only simplepointer-
hasing patterns. The state of the art in thorough 
ompiler-based pre-
omputation is the work of Kim and Yeung [47℄. Kim and Yeung's 
ompilerframework uses 2 kinds of pro�le information | loop iteration 
ount pro�lesand 
a
he miss pro�les | to sele
t 
ompute pre
omputation sli
es for exe-
ution in spare hardware 
ontexts of a simultaneous multithreading (SMT)pro
essor. We perform a more detailed 
omparison of this 
ompiler with oursin Chapter 6.
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Chapter 3Data stru
ture de
omposition using DTra
k
This 
hapter des
ribes DTra
k and our methodology for analyzing ap-pli
ations, and performs a detailed analysis of the data stru
tures of twelveappli
ations. DTra
k separates by data stru
ture the stream of addresses anappli
ation requests from memory. Our exploration reveals a wide variety ofappli
ation behaviors and shows that opportunities for overlapping laten
yexist if hardware 
an adapt to appli
ation requirements.3.1 DTra
k: A tool for studying irregular appli
ationsDTra
k 
onsists of a sour
e-transformation tool to automati
ally in-strument memory allo
ation points in programs and a detailed timing simu-

    addLayout () ;
}

if (inst == mop) {

1

2

struct foo bar ;
void main () {
      for (i = 0; i < 10; ++i) {
            f2 = malloc (struct foo) ;

}
       }

            .....

2

1
sim−alpha

ccc−breeze

struct foo bar ;

void main () {

        for (i = 0; i < 10; ++i) {

       FILE.print ("bar", bar, sizeof(bar)) ;

              PTR = f2 ;

              asm("mop") ;
              ...........
        }
}

              f2 = malloc(struct foo) ;

              NAME = "f2" ;

              SIZE = sizeof(f2) ;

       asm ("mop") ;

Figure 3.1: DTra
k tool
hain27



lator that 
onsumes this instrumentation. The sour
e instrumentation mapsaddresses to data stru
tures in order to 
ommuni
ate the address range 
or-responding to ea
h variable to the simulator. Figure 3.1 shows a s
hemati
 ofour tool.The instrumentation tool is an extension to the C-Breeze C-to-C 
om-piler [30℄, while the simulator is a detailed and validated timing model of theAlpha 21264 pipeline [25℄. For ea
h variable in the program, the 
ompiler-generated instrumentation stores the variable's name and address at a desig-nated lo
ation in memory and interrupts the simulator by means of a spe
ialop
ode (\mop" in Figure 3.1). On exe
uting this instru
tion at runtime, thesimulator imports the information from this designated lo
ation in simulatedmemory. Sin
e the simulator knows the extent of ea
h variable in the appli-
ation at any time, it maps the virtual address of ea
h memory a

ess to aspe
i�
 variable, and maintains statisti
s on the progress of the memory a

essby the data stru
ture it belongs to. Classifying and assigning ea
h load andstore to a spe
i�
 variable slows the simulator down by 60% on average and100% in the worst 
ase.3.2 Design de
isionsThe 
hallenge here is to keep the overhead due to the instrumentationlow and to minimize the perturban
e to the appli
ation. There are two levelsof overhead to 
onsider. The �rst is overhead in the simulator; 
lassifyingea
h load and store to a spe
i�
 variable and in
rementing the appropriate28




ounter slows the simulator down by 60% on average and 100% in the worst
ase. The se
ond and more serious sour
e of overhead is instrumentationin the appli
ation itself. In addition to in
reasing the simulator's burden,appli
ation-level instrumentation 
ould perturb the program under study andso 
ompromise our results. Instrumentation design is therefore guided mainlyby minimizing appli
ation perturban
e:� Sta
k variables are not instrumented be
ause the high frequen
y of s
ope
hanges would raise the instrumentation overhead too mu
h. Instead, wetreat the sta
k as a single data stru
ture and 
oales
e all a

esses to itby a simple range test. Our results will show that misses to the sta
kare generally negligible.� Global variables have a 
onstant range over the lifetime of an appli
a-tion. We 
ommuni
ate the ranges of these variables by writing themto disk and signalling the simulator as shown by instrumentation \1"in Figure 3.1. Sin
e these �le operations are a �xed-time initialization
ost, they provide the most eÆ
ient amortized mode of 
ommuni
ationfor global variables.� Tra
king dynami
 allo
ations on the heap is diÆ
ult be
ause the sameraw address 
ould be allo
ated to di�erent data stru
tures at di�erenttimes in a program's exe
ution. DTra
k instruments heap allo
ationsand deallo
ations (\2" in Figure 3.1) and tra
ks them in the simulator,using them to dynami
ally 
hange the data stru
ture 
orresponding to29



ea
h address. We distinguish data stru
tures on the heap by 
all-site.As a result we are unable to distinguish between multiple allo
ations ata single 
all-site. This design is not a 
on
ern in the SPEC-2000 ben
h-marks we study, but might be a limitation in studying more �ne-grainedobje
t-oriented appli
ations, where a single allo
ation site produ
es lotsof obje
ts in multiple data stru
tures.Taken together, these design de
isions are su

essful at limiting instrumen-tation overhead to 10 instru
tions per heap allo
ation and 4 instru
tions perdeallo
ation. This results in total overhead of less than 0.6% of total in-stru
tion 
ount a
ross all the ben
hmarks we study ex
ept gzip, where theinstrumentation is 3.7% of total instru
tion 
ount be
ause of frequent heapallo
ations in inner loops.Alternatives: We 
onsidered and dis
arded several alternatives to this method-ology for 
lassifying memory a

esses. First, we 
onsidered hardware 
ountersrather than simulation to redu
e the turn-around time on our results. How-ever, hardware 
ounters do not have the �delity and 
exibility to tra
k 
a
hemisses to many spe
i�
 �ne-grained memory regions. Se
ond, we 
onsideredusing the debugging symbol-table information in appli
ation binaries, but we
ould not �nd a way to handle appli
ations with 
ustom memory allo
ators,su
h as twolf. Our methodology makes it easy to inform the C-Breeze passabout the names and prototypes of appli
ation-spe
i�
 
ustom allo
ation rou-tines, along with information about how the size of the allo
ation is obtained30



Feature Size/ValueData 
a
hesDL1 
a
he 64 KB, blo
ksize 64 bytes, 2-way,3 
y
lesL2 
a
he 512 KB, blo
ksize 64 bytes,dire
t-mapped, 12 
y
lesTLBs 128 entriesMain memoryPeak bandwidth 1.6Gbytes/sRambus geometry 64 banks * 512 rows * 2KB/rowA

ess laten
y (
y
les) 32 PRER + 24 ACT + 48 RD/WR+ queuingOut-of-order Pro
essorPipeline width 4Int ALUs, multipliers 4,4FP ALUs, multipliers 1,1Bran
h predi
tor Tournament, 1 KB x 1 KB lo
al,4 KB global, 4 KB 
hoi
eTable 3.1: Details of the simulated Alpha 21264-like pro
essor and memoryhierar
hyfrom the arguments to the allo
ation routine. We began by performing just
a
he simulation, but migrated to a full-s
ale timing simulator in order tobe able to estimate IPC improvements due to optimizations for spe
i�
 datastru
tures. Finally, we used a detailed and validated out-of-order pro
essorsimulator be
ause Pai et al. showed that an out-of-order pro
essor presents tothe memory hierar
hy a very di�erent sequen
e of memory a

esses than anin-order pro
essor [70℄.
31



Ben
hmark IPC DL1 L2Miss-rate Miss-rate164.gzip 1.39 2.3 3.9175.vpr 0.67 3.0 35.3176.g

 1.15 3.2 10.4177.mesa 1.06 0.9 23.4179.art 0.23 14.8 74.9181.m
f 0.14 24.1 60.5183.equake 0.58 14.1 29.4186.
rafty 1.21 1.3 4.3188.ammp 0.57 10.0 45.0197.parser 0.97 3.6 21.5256.bzip2 1.16 2.1 32.6300.twolf 0.51 9.5 26.9sphinx 0.58 15.8 41.9Table 3.2: The ben
hmarks we use and their aggregate memory hierar
hybehavior3.3 Methodology: Ben
hmarks, inputs and simulationperiodsWe now des
ribe our methodology for the experiments in this disserta-tion, in
luding simulated ma
hine 
on�gurations, ben
hmarks and simulationinterval sele
tion. We use a version of the sim-alpha [25℄ timing simulatormodi�ed to 
onsume the DTra
k instrumentation and maintain 
a
he and TLBstatisti
s by data stru
ture. Figure 3.1 shows the baseline 
on�guration wesimulate, in
luding a Rambus memory model. Table 3.2 lists some aggregateproperties of the ben
hmarks we study, in
luding average instru
tions per 
y-
le (IPC) and miss-rates at the level-1 data (DL1) and level-2 (L2) 
a
hes. Ourben
hmarks range from regular ones su
h as 179.art to highly irregular ones32



su
h as 300.twolf, from 
ompute-bound (164.gzip) to memory-bound (181.m
f).We are unable to study the remaining 3 C ben
hmarks in the SPEC2000 suitedue to methodologi
al diÆ
ulties; 253.perlbmk no longer builds on our Alphaplatform with the latest version of lib
, and 254.gap and 255.vortex run in
or-re
tly on our native Alpha platform be
ause of unaligned addresses generatedby their 
ustom memory-managers. While these unaligned addresses 
ouldbe �xed by modifying the ben
hmark sour
es, we estimate that adding thene
essary padding 
ould signi�
antly perturb ben
hmark behavior. All oursimulations use the designated ref input set for the 
orresponding ben
hmark.Simulation intervals: We used two sets of simulation intervals for our sim-ulations. First, for the study of global phase behavior in the next 
hapter wesimulated ea
h of our appli
ations to 
ompletion. To keep experiment dura-tions reasonable we partitioned the total run-time for ea
h appli
ation into
hunks of 1 billion instru
tions, and performed a set of simulations in parallelon a 
luster of Linux workstations managed by Condor [57℄. Ea
h simula-tion performs fun
tional simulation for a staggered duration, then performsdetailed timing simulation for 1 billion instru
tions. We then aggregated theresults of all these simulations o�ine to generate phase data for the entireappli
ation.In prin
iple, our parallel approa
h 
an introdu
e errors due to the 
old
a
hes that appear every billion instru
tions. All but one or two billion-instru
tion samples in ea
h of our ben
hmarks en
ounter at least 6.7 million33



misses in the DL1 and 0.4 million misses in the L2. Only 164.gzip and 177.mesaoften have less than 2.8 million L2 misses per billion-instru
tion sample. Sin
ethe error due to extra 
ompulsory misses is a maximum of 512 misses in theDL1 and 8192 misses in the L2 in every billion instru
tions, the fra
tion ofextra 
ompulsory misses we introdu
e is no more than 0.05% in the DL1 and1.8% (0.2% ex
luding mesa and gzip) in the L2.The results of these experiments, when 
orrelated with high-level loops,yielded the major outermost loops that 
onstitute more than 90% of the ex-e
ution of ea
h of our appli
ations. For all our experiments ex
ept for phasebehavior we then sele
ted one iteration of this outermost loop, demar
atingthe start and end of this iteration by a spe
ial `marker' op
ode using the te
h-niques outlined above, performing fast fun
tional simulation until we rea
hthis op
ode, and detailed timing simulation thereafter until rea
hing the endmarker. These simulation periods have been veri�ed to be representative ofea
h appli
ation's runtime and aggregate 
a
he miss behavior.The ex
eptions to this methodology are the appli
ations 176.g

, 186.
rafty,197.parser, and sphinx, for whi
h we were unable to generate global phase datadue to infrastru
tural issues. For these appli
ations we determined the endof initialization by inspe
ting their sour
e 
ode and simulated 500 million in-stru
tions past this point.
34
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Figure 3.2: De
omposition of DL1 misses and a

esses by data stru
ture. L2misses show similar trends to DL1 misses.
35



3.4 Results: Data pro�les and distributionsHaving des
ribed DTra
k and our experimental methodology, we nowpresent a detailed 
hara
terization of the above SPEC ben
hmarks using DTra
k.We begin by studying basi
 data pro�les generated by DTra
k, and then ex-plore two ways that this new 
apability to visualize the behavior of di�erentdata stru
tures 
an be used to help answer sophisti
ated ar
hite
tural ques-tions. DTra
k generates data pro�les. Figure 3.2 breaks down the aggregatememory behavior of our appli
ations { a

esses and miss-rates at the DL1 andL2 { by the three data stru
tures that 
ause the most DL1 misses (DS1, DS2,DS3), the sta
k, and everything else. Figure 3.2.a shows that the breakdownof a

esses to the DL1 (and therefore the rest of the memory hierar
hy) variesgreatly a
ross our appli
ations. While 179.art and 181.m
f have skewed dis-tributions, with 80% of all a

esses 
oming from 2 data stru
tures, 300.twolf,176.g

 and 186.
rafty have extremely balan
ed distributions; no data stru
-ture 
ontributes more than 2% of a

esses, and it takes 60{100 distin
t datastru
tures to a

ount for 90% of 
a
he misses. Other appli
ations lie betweenthese extremes.While a

esses are often spread out, Figure 3.2.b shows that missestend to 
luster. The top 5 data stru
tures usually 
ontribute more than 90%of all DL1 misses. The ex
eptions are 176.g

, 186.
rafty, and 197.parser witha long tail of minor data stru
tures that respe
tively end up a

ounting for84%, 67% and 78% of all 
a
he misses. Among the other appli
ations, the36



Name Type A

ess Footprint Obje
t164.gzipwindow Array Regular 64KB 2 bytesprev Array Regular 64KB 2 bytesinbuf Array Regular 184320KB 1 byte175.vprrr node Array Irregular 10638KB 40 bytesrr heap Array Irregular 6717KB 24 bytesrr node route inf Array Irregular 2653KB 16 bytes176.g

reg last sets Array Irregular 0.5KB 8 bytesreg last uses Array Irregular 0.5KB 8 bytesqty 
onst insn Array Irregular 4KB 8 bytes177.mesaImage Buffer Array Regular 2560KB 2 bytesDepth Buffer Array Regular 5120KB 4 bytesVertex Buffer Array Regular 920KB 920KBTable 3.3: Details for some of the major data stru
tures in Figure 3.2.major data stru
tures end up partitioning 
a
he misses among themselves ina variety of ways; the top data stru
ture 
an 
ontribute anywhere between 20and 80% of total 
a
he misses.Comparing Figures 3.2.a and 3.2.b, we see that 
a
he misses and a
-
esses are poorly 
orrelated. A few appli
ations su
h as 179.art and 181.m
freveal a simple underlying organization with only a few data stru
tures, andmisses tra
king the distribution of a

esses. However, the majority of appli-
ations show a well-understood pattern where a data stru
ture re
eives morea

esses than another, yet a

ounts for fewer misses. As expe
ted, the sta
ka

ounts for a signi�
ant fra
tion of a

esses without ever presenting a signif-37



Name Type A

ess Footprint Obje
t179.artf1 layer Array Regular 625KB 64 bytesbus Array Regular 859KB 8 bytestds Array Regular 859KB 8 bytes181.m
fnodes Array Regular & irregular 7071KB 120 bytesar
s Array Irregular 188416KB 64 bytesdummy ar
s Array Irregular 3771KB 64 bytes163.equakeK 3D Array Regular 22399KB 8 bytesdisp 3D Array Regular 2828KB 8 bytesM 3D Array Regular 943KB 8 bytes186.
raftyrook atta
ks Array Irregular 127KB 8 byteslast ones Array Irregular 64KB 1 bytefirst ones Array Irregular 64KB 1 byteTable 3.4: Des
riptions of the major data stru
tures in Figure 3.2 (
ont'd).i
ant problem to the DL1. The sole ex
eption is 186.
rafty where the sta
k
olle
tively 
ontributes more misses than any single global data stru
ture. Aswe have seen, however, 186.
rafty has a very balan
ed distribution, and thesta
k still a

ounts for only 11% of DL1 misses.3.5 Data stru
ture detailsSo far we have looked at di�eren
es in miss distribution a
ross the majordata stru
tures in the di�erent SPEC ben
hmarks while hiding details aboutthe individual data stru
tures behind the anonymous names DS1, DS2 and38



Name Type A

ess Footprint Obje
t188.ammpatoms Pointer Regular & irregular 41322KB 2208 bytesnodelist Array Regular 76KB 232 bytesatomlist Array Regular 4372KB 232 bytes197.parserConne
tor Various Irregular variable 24 bytesDisjun
t Various Irregular variable 40 bytestable Various Irregular variable 40 bytes256.bzip2blo
k Various Irregular 900KB 1 bytequadrant Various Irregular 1800KB 2 byteszptr Various Irregular 3600KB 4 bytes300.twolfnet array[℄!netptr Pointer Irregular 253KB 48 bytestmp rows Array Irregular 34KB 1 byterows Array Irregular 34KB 1 bytesphinxModel Array Irregular 3343KB 168 byteshmms Array Irregular 3531KB 76 bytesTable 3.5: Des
riptions of the major data stru
tures in Figure 3.2 (
ont'd).DS3. Tables 3.3{3.5 summarize the high-level details of these data stru
tures.For ea
h ben
hmark, we show the name of these data stru
tures as used inthe sour
e 
ode, along with a brief summary of the type of the data stru
ture(array or re
ursive), whether it is predominantly a

essed in a regular fashionwith spatial lo
ality or in an irregular fashion with low spatial lo
ality. Finally,we provide the size of ea
h obje
t in these data stru
tures and their total sizesin the appli
ation.The major data stru
tures are predominantly array-based in the appli-39




ations we study. However, these data stru
tures are often used to emulate
omplex graphs using either real pointers (181.m
f:nodes, 175.vpr:rr node)or integers that index into other arrays (256.bzip2:quadrant, 300.twolf:rows).The wide variety of uses indi
ate that data stru
tures are often de
lared tobe arrays solely to simplify memory management. Most of the major datastru
tures are dynami
ally allo
ated on the heap. The major ex
eptions are186.
rafty that 
auses a signi�
ant fra
tion of misses to the global segment,and 176.g

 whi
h allo
ates most of its variables on the sta
k using allo
a.We now examine the wide variety of patterns by whi
h these data stru
turesare a

essed.3.6 Data stru
ture a

ess patternsThis detailed de
omposition provides a glimpse into the array of be-haviors shown by the di�erent data stru
tures in a single appli
ation, rangingfrom uniformly regular or irregular a

ess a
ross all major data stru
tures toa 
ombination of a

ess patterns for di�erent data stru
tures. There is nopattern in fra
tion of footprint or total a

esses that these data stru
tures o
-
upy. A data stru
ture's a

ess and miss rank is often not the same, and thedistribution of misses among the major data stru
tures varies widely a
rossappli
ations. A

ounting for 90% of DL1 misses requires between 2 and 25distin
t data stru
tures for di�erent programs. Finally, appli
ations whereirregular a

esses dominate - su
h as m
f - show synergisti
 e�e
ts betweendata stru
tures; improving multiple data stru
tures simultaneously does sig-40



// 
omplex termination 
ondition not shownloop for 
ell = 
array[$random℄:if 
ell->
lass == -1:
ontinueblkptr = barray[
ell->
blo
k℄ // 8 bytestile = 
ell->tileptr // 16 bytesterm = tile->termsptr // 64 bytesloop 3 times:loop until term is null:net = term->neta = netarray[net℄ // 128 bytesb = term->termptr // 64 bytes
 = tmp_rows[net℄ // 8 bytesd = rows[net℄ // 8 bytesterm = term->nextterm // 64 bytesendendendFigure 3.3: Case study: Sequen
e of obje
ts tou
hed by one of the main loopsin twolf. Size of ea
h obje
t in 
omments.ni�
antly better than just improving ea
h of them in isolation. As we willshow, irregular appli
ations often exhibit di�erent a

ess patterns for ea
hdata stru
ture in a single phase, 
ombining spatial, pointer and indire
t array-index a

ess. This interleaving of di�erent types of a

ess is a 
hallenge forprefet
hing methods that fo
us on just one type of a

ess pattern [23, 44℄.While 179.art and 183.equake have regular a

ess patterns, the oth-ers interleave spatial and pointer a

ess in 
omplex ways. This interleavingmay happen for three reasons. First, the appli
ation may perform strided41



a

ess through an array while dereferen
ing pointer �elds from ea
h element(m
f:nodes, 188.ammp:atoms). Se
ond, the appli
ation may perform strideda

ess that uses the elements of one array to index into another (bzip2:quadrant,300.twolf:rows). This is a form of pointer traversal that 
urrent pointer prefet
h-ing s
hemes [23, 76℄ often 
annot dete
t. Finally, the appli
ation may a
-
ess the elements of a data stru
ture in irregular order, but ea
h obje
t mayspan multiple 
a
he blo
ks that are a

essed sequentially (ammp:nodelist,twolf:netptr) due to large obje
t size or irregular obje
t alignment in the
a
he. Su
h 
omplex interleavings are a 
hallenge to both spatial and pointer-based prefet
h systems.A

ess-pattern 
ase study: We now perform a more detailed analysisto illustrate the potential for improvement from overlapping memory laten
yand the 
hallenges in 
onverting this potential. We fo
us on just one of ourben
hmarks - twolf - and look in its sour
e 
ode for insight into its behavior.Guided by the data pro�le in Figure 3.2 and by the more 
onventional 
odepro�le, our study yields Figure 3.3, the sequen
e of obje
ts a

essed in a 
ru
ialinner loop in twolf, responsible for 55% of all DL1 misses. This loop illustratestwo interesting phenomena. First, while programs as a whole often have alarge footprint, the footprint of ea
h loop iteration in an irregular appli
ation�ts easily in the DL1. Se
ond, most misses in appli
ations o

ur on the �rsta

ess to an obje
t in a loop iteration.Sin
e di�erent data stru
tures 
an a

ess memory with a wide variety42



of a

ess patterns in a single program phase, it is important for the system tooptimize ea
h a

ording to its needs. Ea
h loop iteration has a small footprint,so it is feasible to prefet
h future iterations without disturbing the data for the
urrent iteration. However, prefet
hing the data required for ea
h iteration is
hallenging be
ause it in
ludes elements from di�erent data stru
tures withdistin
t a

ess patterns. Taken together, these insights suggest a model wheredata streams into the pro
essor in bundles of obje
ts that ea
h iteration willuse. In the latter half of this dissertation we explore TwoStep, a 
on
reteimplementation of this model.Having used the basi
 
apabilities of DTra
k to 
hara
terize our appli-
ations, we now explore novel uses of DTra
k in asking and answering sophis-ti
ated questions on ar
hite
ture design.3.7 Case study: Data stru
ture 
riti
alityOur �rst 
ase study 
on
erns 
riti
ality of memory referen
e. Severalre
ent studies have shown that not all 
a
he misses are equally important asmeasured in the amount of laten
y that they expose to the pro
essor [92℄.In this 
ontext, does it make sense to simply use miss 
ounts to sele
t thedata stru
tures on whi
h to fo
us our attentions? To answer this questionwe augment DTra
k to dete
t 
y
les when no instru
tions are retired, andassign responsibility for ea
h su
h stall 
y
le to the data stru
ture referen
edby the load or store at the head of the reorder bu�er [91℄. Our results showthat for our appli
ations the data stru
tures that 
ause the most misses are43
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Figure 3.4: De
omposition of DL1 and L2 miss-rates by data stru
ture. Theaggregate miss-rate for ea
h appli
ation is denoted by a horizontal line.
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almost always also the ones responsible for the most stall 
y
les. There are twoex
eptions to this trend. The �rst is in 179.art; the array tds 
auses only 2.1%of all 
a
he misses, but is responsible for 16.6% of all stall 
y
les. This datastru
ture is 
riti
al be
ause of the following loop that a

umulates a subset ofits elements:for (tj=0;tj<numf2s;tj++) {if ((tj == winner)&&(Y[tj℄.y > 0))tsum += tds[ti℄[tj℄ * d;} This 
ombination of data-dependent bran
hes and 
omputation seri-alized by tsum 
auses the infrequent 
a
he misses in this loop to almost in-variably stall the pipeline. Our 
on
lusion is strengthened by a study of thesour
e 
ode. 179.art is a neural network simulator where learning o

urs byiteratively modifying two arrays of top-down and bottom-up weights { tds andbus respe
tively. While these two arrays are largely a

essed in very similarways, the above loop is the only major a

ess pattern not shared with bus.The se
ond data stru
ture that we observe 
ausing a disproportionate num-ber of stalls is the variable sear
h in the 
hess-playing ben
hmark 186.
rafty,whi
h is responsible for 10.5% of all stall 
y
les in spite of 
ausing just 0.2% ofall 
a
he misses. This global data stru
ture 
ontains the 
hess position being
urrently analyzed, and is used to display the board on s
reen. With the ex-
eption of these two data stru
tures, the 
orrelation between miss 
ount and45



stall 
y
le 
ount shows that data-stru
ture 
riti
ality is of limited usefulnessin the predominantly irregular programs that we study.A related idealized experiment that provides indire
t 
on�rmation ofthis result explores the e�e
t of sele
tively providing di�erent data stru
turesperfe
t single-
y
le a

ess to memory. To model this ideal behavior, we sim-ulate 
a
he misses to spe
i�
 data stru
tures in a single 
y
le, but 
ontinueto move data in these stru
tures through the memory hierar
hy so as to notgive other data stru
tures an unrealisti
ally generous view of 
a
he 
apa
ity.We �nd that sele
tively eliminating 
a
he misses in even the most importantdata stru
ture in an appli
ation has limited impa
t on performan
e in a ma-jority of our appli
ations. While there are a few ex
eptions, namely 188.ammp,183.equake, it usually requires perfe
t memory for 2-5 major data stru
turesto bring performan
e 
lose to ideal. This result shows that future ar
hite
-tural and 
ompiler enhan
ements will often need to optimize multiple datastru
tures in di�erent ways to signi�
antly improve overall performan
e inmemory-bound appli
ations. It also shows that DTra
k is indeed highlight-ing bottlene
ks in the memory system when it ranks data stru
tures by missfrequen
y.3.8 Case study: Competition for 
a
hesWhile Figures 3.2.a and 3.2.b show the distribution of a

esses to theDL1 and L2, Figures 3.4.a and 3.4.b show the 
orresponding miss-rates atea
h level of the memory hierar
hy. A 
ommon pattern in these �gures is for46
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Figure 3.5: Breakdown of premature evi
tions. Useful data is only infrequentlyevi
ted by a di�erent (di�) data stru
ture.a data stru
ture with fewer 
a
he misses to have a higher miss-rate. This pat-tern o

urs as the major data stru
tures 
ompete with ea
h other for limited
a
he 
apa
ity, so that a data stru
ture that misses more often ends up witha larger fra
tion of the 
a
he. While this is qualitatively a desirable response,su
h 
ompetition may 
ause suboptimal performan
e if di�erent data stru
-tures repeatedly evi
t ea
h other. If this behavior were found to be 
ommon, a
omputer ar
hite
t may 
onsider 
reating split 
a
hes [31℄ with stati
 mappingpoli
ies assigning ea
h data stru
ture to a spe
i�
 
a
he partition, or designing
a
hes to bypass data in 
ertain regions of a program's address spa
e. Fig-ure 3.5 shows how often useful data in the 
a
he is prematurely evi
ted bya di�erent data stru
ture as opposed to the same one. With the ex
eptionof 256.bzip2 the majority of premature evi
tions are 
aused by 
on
i
t withina data stru
ture, rendering a split 
a
he by data stru
ture unne
essary for47



these appli
ations. This and the previous experiment are good examples ofthe ways that DTra
k 
an help the 
omputer ar
hite
t with design de
isionswhere traditional tools are unable to do so.3.9 SummaryAnalyzing our appli
ations by data stru
ture 
on�rms and quanti�estwo nuggets of 
onventional wisdom that fo
us our attention in the rest of thisdissertation:1. \Appli
ations are not all alike." The number of data stru
tures that
ontribute 90% of an appli
ation's 
a
he misses varies from 2 to 100.Appli
ations with similar aggregate DL1 miss-rates of 20% 
an exhibitmiss-rates of 2-40% for important data stru
tures. The wide variety ofbehaviors, and the fa
t that not all appli
ations have hot data stru
tures,
on�rms the need for appli
ation-spe
i�
 system adaptation.2. Extremely irregular a

ess patterns may be found in the wild. 181.m
fperforms bounded depth-�rst-sear
h over sub-trees; 300.twolf and 256.bzip2perform lots of indire
t array a

ess; 188.ammp interleaves random pointertraversals with spatial a

ess over ea
h 2KB obje
t. As a result, 
a
hemisses largely o

ur on the �rst a

ess to an obje
t in a loop iteration,and predi
ting the obje
t ea
h iteration will a

ess 
an be diÆ
ult.The 
ombination of these insights leads us to a prefet
h system biased towards
omplex a

ess patterns. Sin
e the footprint of any given loop iteration is48



tiny relative to 
a
he 
apa
ity, we fo
us on or
hestration at the loop iterationgranularity.In addition to these insights, DTra
k in
uen
es the rest of this disserta-tion in two methodologi
al ways. First, it provides valuable infrastru
ture fordebugging optimizations as we des
ribe later. Se
ond, our analysis of 
riti
alloads in Se
tion 3.7 suggests a metri
 to evaluate optimizations in s
hedul-ing - redu
tion in stall 
y
les. S
heduling does not eliminate 
a
he misses forirregular programs without mu
h spatial lo
ality. Thus, 
a
he miss 
ountsand rates should remain un
hanged in the presen
e of prefet
hing. Measuringredu
tion in stall 
y
les provides a solution to this problem, quantifying thelaten
y toleran
e of a prefet
hing approa
h. One additional wrinkle is that
riti
al paths 
an be easily shifted by improvements or 
hanges to the appli
a-tion [28, 92℄. This suggests re�ning our metri
 to stall 
y
le redu
tion by datastru
ture, whi
h gives us a ri
her pi
ture of how well a te
hnique addressesthe per
eived problem, and also of how mu
h speedup we obtain before hittingthe next bottlene
k.In the next 
hapter, we extend these insights to phase behavior, againusing novel methodology to quantify phase variation in a

ess patterns, andproviding key infrastru
ture for sele
ting good simulation intervals from a high-level perspe
tive. Our 
hara
terization then drives the design of TwoStep,whi
h provides a parsimonious basis set of me
hanisms to give ea
h majorloop in an appli
ation a 
arefully tuned prefet
hing strategy, spe
ifying whatto prefet
h, when to prefet
h it, and where to prefet
h it to.49



Chapter 4Phase analysis
This 
hapter extends our high-level 
hara
terization of appli
ations byde
omposing appli
ation behavior by data stru
ture and global program phase,and by translating this de
omposition into a summary of major appli
ationa

ess patterns that is used in the design of TwoStep in the next 
hapter. Inthe pro
ess, we make two 
ontributions to the state of the art in phase analysismethodology.Phase behavior has re
eived mu
h attention in re
ent times [6, 52, 68,82℄, with the eventual goal of designing system hardware/software to adapt to
hanging appli
ation requirements. Studies using Basi
 Blo
k Ve
tors (BBVs)explore their uses in 
lustering phases and dete
ting phase transitions in ano�ine [83, 84℄ and online [86℄ setting. One alternative to BBVs is the use ofprogram 
ounter or Extended Instru
tion Pointer Ve
tors (EIPVs) [6℄. An-other alternative 
onsists of more high-level metri
s based on 
ode stru
ture,su
h as register use ve
tors or loop ve
tors [52℄. All these studies share a
ommon work
ow. They generate the variation of some metri
 (su
h as 
a
hemiss-rate) over time, aggregated in some sampling period. They then try toidentify regions with `similar' behavior and the boundaries between su
h re-50



gions. All these studies su�er from two major drawba
ks:� They operate on aggregate phase data for dete
ting phase behavior.While this is suÆ
ient for some appli
ations, we show in Se
tion 4.1that it 
an hide details of memory behavior.� They sele
t their sampling period in an ad ho
 fashion and use a sin-gle sampling period a
ross all their appli
ations to automati
ally dete
tphase boundaries [82℄. Nagpurkar et al. re
ently showed that the notionof phase boundaries is not absolute, and that the phase boundaries onepi
ks and the granularity at whi
h to view them depend on their even-tual purpose [68℄. This result suggests that automati
 phase-dete
tionalgorithms are deeply in
uen
ed by the sampling period at whi
h datais provided to them.Our methodology addresses both drawba
ks. In Se
tion 4.1 we use DTra
kto measure phase behavior on a data stru
ture basis. In Se
tions 4.2{4.4 wedemonstrate a new te
hnique based on spe
tral analysis that automates thepro
ess of sele
ting a good sampling period for phase data. Rather than pi
kan ad ho
 sampling period and then automati
ally determine phase boundariesat that granularity, we automate sampling period sele
tion to yield a phasegraph where global phase behavior is more readily apparent.Applying these two methodologi
al improvements, we quantify the phasebehavior for ea
h appli
ation at an appli
ation-spe
i�
 sampling period in Se
-51
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Figure 4.1: Just tra
king total misses 
an miss interesting e�e
ts. DL1 
a
hemisses in aggregate and by data stru
ture in 188.ammp.tion 4.7. Our results show that data stru
tures have very di�erent a

ess pat-terns in di�erent phases; however all data stru
tures in an appli
ation largelyshare the same phase boundaries. We use this phase data in Se
tion 4.8 to de-termine the dominant a

ess patterns in ea
h appli
ation, a high-level insightthat is used to drive the design of the TwoStep prefet
hing system in the restof the dissertation.4.1 Analyzing phase behavior by data stru
tureStudying phase behavior by data stru
ture is important; looking at thetime-varying behavior of aggregate misses alone 
an be misleading and hideimportant data stru
ture intera
tions. Figure 4.1 illustrates this: the datastru
tures atoms and nodelist in 188.ammp are 
onsistently anti-
orrelated.As one in
reases the other de
reases and vi
e versa. Studying just the 
urvefor total 
a
he misses would miss this intera
tion and also underestimate thedegree to whi
h the appli
ation's behavior is 
hanging under the surfa
e. The52



redu
ed amplitude 
hanges also make automati
 phase dete
tion more diÆ
ult,as we explore later in this 
hapter.This pattern is not un
ommon; six of the nine appli
ations we studyexhibit signi�
ant di�eren
es in data stru
ture miss distribution in di�erentphases. Therefore in the rest of the results in this 
hapter we use our DTra
ktool
hain to generate time-varying miss-
ount or miss-rate data for individualdata stru
tures rather than for the aggregate appli
ation as a whole.4.2 Sampling period sele
tion: OverviewOur se
ond methodologi
al innovation is a te
hnique to view time-varying behavior at a sampling period that highlights global phase transitions.Our te
hnique is based on two insights from spe
tral analysis: that in
reasingsampling period is a pro
ess of aggregation that has a damping e�e
t, and thatglobal phase behavior 
onsists of emphasizing rare (low-frequen
y) transitionsover 
ommon (high-frequen
y) ones. Figure 4.2 shows the temporal variationin DL1 miss 
ount for a single data stru
ture in 183.equake by aggregatingmiss 
ount at three di�erent sampling periods: one sample every 10 million
y
les, one sample every 180 million 
y
les, and one sample every 500 million
y
les. This �gure illustrates a general trade-o� for phase analysis, either of-
ine or online. O�ine, overly frequent sampling puts too many data pointson a graph, making global trends harder to dete
t. Online, frequent samplingin
reases overheads. Conversely, in
reasing sampling period too mu
h redu
esthe information 
ontent to 
lose to that of aggregate DL1 misses, defeating the53
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y
lesFigure 4.2: Sele
ting a sampling period, step 1: Phase behavior 
urves 
orre-sponding to a stream (183.equake) at di�erent sampling periods. The 
hallengeis to sele
t a sampling period that is neither too noisy (a) nor over-damped(
), but just right (b).purpose of phase analysis, whether o�ine or online. We would like to avoidboth 
lasses of degenerate data 
olle
tion.We begin our des
ription of this pro
ess by outlining the various stagesinvolved in our o�ine methodology, and by introdu
ing some terminology inthe pro
ess. First, we generate a stream of data-stru
ture-spe
i�
 data usingDTra
k at a low sampling period of one million 
y
les. To model larger sam-pling periods we aggregate the points in this stream to generate various 
urvessu
h as the ones shown in Figure 4.2. We then use a simple volatility metri
 |des
ribed in the next se
tion | to 
ompute the volatility of these 
urves, and
ombine the volatilities at di�erent sampling periods to generate a volatilitypro�le for the stream. This pro
ess is graphi
ally depi
ted in Figures 4.2{4.8.54



Volatility pro�les provide a 
on
ise summary of the phase behavior of an ap-pli
ation at di�erent granularities; we show that they suggest good samplingperiods in a straightforward manner: low granularities with low volatilities.We now des
ribe ea
h stage in detail, dwelling on the intuitions behind ourdesign de
isions and the alternatives we 
onsidered.4.3 Sampling period sele
tion: The volatility metri
Phase boundaries in a 
urve are dramati
 
hanges in amplitude overtime. In sele
ting the right granularity to dete
t phase boundaries we wouldlike to highlight only the most important su
h dramati
 
hanges. Thus, thevolatility of a 
urve should answer the question: what is the largest magnitudeof amplitude 
hange 
ommonly seen in the 
urve? Let us begin by answeringthis question for the degenerate 
ase: with a 
urve 
ontaining just two points.We denote the 
urve 
onsisting of the values X1, X2 in adja
ent time steps as[X1; X2℄.Volatility at a point: The 
urve [1:1; 1:2℄ has mu
h lower volatility thanthe 
urve [1; 10℄. This intuition is adequately 
aptured by our 
onventionalnotion of relative 
hange, or growth. A variable that doubles between adja-
ent sampling intervals demonstrates higher volatility than one that grows orshrinks by 10%. We formalize this notion into the following volatility metri
at a given time step. Given a stream [X1; X2; X3 : : :℄, the volatility at ea
htime step is de�ned as: 55



Curve Point volatilities[1; 1; 1; 1; 1℄ f0; 0; 0; 0g[1; 1; 1; 1; 2℄ f0; 0; 0; 0:5g[1; 2; 1; 2; 1℄ f0:5; 0:5; 0:5; 0:5g[1; 10; 1; 10; 1℄ f0:9; 0:9; 0:9; 0:9gTable 4.1: Computing the point volatilities of some simple example 
urves.gt = abs(Xt �Xt�1)max(Xt; Xt�1) (4.1)gt is similar to the 
onventional notion of `growth', ex
ept that it issymmetri
: gt is 0.5 whether Xt has doubled (\grown by 100%") or halved(\shrunk by 50%") sin
e the last time step. This symmetry ensures that thevolatility between two values is the same regardless of whi
h 
omes �rst. Bythis de�nition, the 
urve [1; 10℄ has a volatility of 0:9, while the 
urve [1; 1:2℄has a volatility of 0:1. Even more trivially, the 
urve [1; 1℄ has a volatility of0.Summarizing the volatility of a 
urve: Given the above formulationfor the volatility of a 2-point 
urve, we 
an now view a 
urve with n points[X1; X2; X3 : : :℄ as a set of 2-point 
urves f[X1; X2℄; [X2; X3℄ : : :g, and we 
annow 
ompute the point volatility for ea
h of these. Table 4.1 shows the pointvolatilities of some simple example 
urves. Noti
e that ea
h point volatility liesin the open interval (0; 1), that equal adja
ent values yield a point volatilityof 0, and that rapid in
reases and de
reases in value 
ause high volatilities.Figure 4.3 illustrates this pro
ess for a 
urve with more points, showing the56
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ting a sampling period, step 2: Corresponding point volatili-ties for ea
h point in the graphs of Figure 4.2.
orresponding point volatilities gt for the 
urves in Figure 4.2.Summarizing the volatility of these 2-point 
urves is an exer
ise instatisti
s, and there are many 
andidate ways to do so, starting with simpleones su
h as mean, median and mode. To sele
t a good method of sum-marization, re
all that the goal is to determine the largest volatility that is
ommonly seen in the 
urve. This requirement 
an be broken down into twosub-requirements: �rst, that all 
ommonly o

urring volatilities be 
onsid-ered in our aggregation; and se
ond, that rare volatilities not be 
onsidered.Figure 4.4 provides an alternative way to formulate our requirement: 
urveswith similar magnitudes of high-frequen
y noise must have the same volatil-ity, regardless of their low-frequen
y phase behavior. Let us 
onsider the threesimplest alternatives for aggregating point volatilities in the light of these re-quirements: 57
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: both these 
urves shouldhave the same volatility, as an indi
ation of how mu
h noise is added by the
ommon transitions, while ignoring the rare transitions.� Mean. The mean of a set of values is sensitive to infrequent outliers.This violates our se
ond 
onstraint. It 
an also 
ause a set of high pointvolatilities to be `smeared down' into a lower value in the aggregate. Forinstan
e, the set of point volatilities f0; 0; 0:5; 0:5g translates to an aver-age of 0:25 whi
h underestimates the 
ommon volatility of 0:5, violatingour �rst 
onstraint.� Median. Consider the set of point volatilities f0; 0; 0:25; 0:5; 0:5g. Themedian 0:25 violates our �rst 
onstraint: 0:5 is larger and 
ommon.� Mode. The median is 
ompletely unrelated to our requirements and dra-mati
ally in
orre
t for sets with balan
ed frequen
ies: f0; 0; 0; 0:9; 0:9; 0:5gwould yield 0, violating both of our 
onstraints.Thus, none of these are suitable. However, this qui
k thought experimentyields one major insight: that we need to �x pre
isely what we mean by `
om-58
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ting a sampling period, step 3: Sort the point volatilities forea
h graph in Figure 4.3. The volatility of the 
urve is de�ned as the pointvolatility at the 90th per
entile.mon' or high-frequen
y. While mean and mode entirely fail to 
apture ourrequirements, the problem with using the median is relatively minor, and is
orre
ted by in
reasing the per
entile at whi
h to pla
e the maximum bound.Thus, sele
ting the median or 50th per
entile 
ould miss a higher point volatil-ity that o

urs nearly 50% of the time, sele
ting the 70th per
entile 
ould missa higher point volatility that o

urs at most 30% of the time, and so on. Weempiri
ally �nd that sele
ting the 90th per
entile, whi
h ex
ludes 10% of thelargest point volatilities, gives us a good measure of the largest and 
ommon-est transitions in a 
urve | the high-frequen
y noise. Thus, we generate thevolatility of a 
urve from the set of its point volatilities by sorting the pointvolatilities in as
ending order and reading o� the point volatility o

urringat the 90th per
entile. Figure 4.5 illustrates this pro
ess for our running ex-ample 
urves of Figure 4.3. In ea
h graph, the dotted line denotes the 90th59
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Sampling period (millions)Figure 4.6: The volatility pro�le for the data stru
ture inbuf in 164.gzip,showing volatilities for 
urves aggregating from 1 to 500 million 
y
les worthof DL1 
a
he misses together.per
entile and the point volatility at this per
entile is treated as the volatilityof the entire 
urve.4.4 Sampling period sele
tion: Volatility pro�lesWe have thus far determined a suitable volatility metri
 quantifyingthe amount of high-frequen
y noise in a 
urve. The next step is to use thisvolatility metri
 to determine a suitable sampling period for a given stream.To do so, we �rst 
ompute the set of 
urves 
orresponding to the input streamwhen aggregated at di�erent sampling periods. For ea
h 
urve we determinethe volatility as des
ribed above. Plotting the volatility of the 
urve againstthe sampling period at whi
h it was gathered yields the volatility pro�le forthe underlying stream.Figure 4.6 shows one su
h volatility pro�le. Putting together ourmethodology in every stage so far, this graph is generated as follows. We
on�gure DTra
k to emit miss-
ount statisti
s by data stru
ture every 1 mil-60



lion 
y
les and run 164.gzip on top of it. This experiment yields us a stream ofdata points 
orresponding to the DL1 miss 
ount for inbuf in every million-
y
le interval of exe
ution. Aggregating these data points in di�erent waysyields 
urves for the DL1 miss 
ounts every 2 million 
y
les, every 3 million
y
les, and so on. We 
ompute the volatility for every su
h 
urve from sam-pling period of 1 million to 500 million 
y
les, and plot the resultant volatilitiesagainst sampling period to yield the graph of Figure 4.6. The points on thisgraph with relatively low volatilities represent sampling periods where globalphase behavior is more salient and easily dis
erned. The next two se
tionsnow elaborate on the pro
ess of sele
ting a good sampling period given thedi�erent types of volatility pro�les.4.5 Results: Volatility pro�lesTo generate volatility pro�les for our appli
ations, we apply the pro-
edure from the previous se
tion on streams for DL1 and L2 miss 
ount andmiss-rate of the most frequently missing data stru
tures as generated by themethodology outlined in Se
tion 3.3. A
ross the appli
ations we study, we �ndthat the DL1 and L2 miss 
ounts for di�erent data stru
tures largely exhibitvolatility pro�les with the same trends, and with minima at the same samplingperiods. Therefore, we fo
us on the DL1 miss-
ount stream for a single majordata stru
ture in ea
h of our appli
ations. The left-hand graphs in Figures 4.7and 4.8 summarize the volatility pro�les for these data stru
tures.The volatility pro�les in Figures 4.7 and 4.8 may be 
lassi�ed into61



three 
ategories. First, 175.vpr, 179.art, 181.m
f, and 300.twolf show 
onsis-tently low pro�les, so that an arbitrary sele
tion is likely to highlight globalphase behavior. Se
ond, 177.mesa, 183.equake, and 256.bzip2 exhibit mono-toni
ally de
reasing volatility pro�les as a result of the natural damping e�e
tsof aggregation with in
reasing sampling period. In these 
ases we empiri
allysele
t the smallest sampling period with a volatility of less than 0:2. Thethird and �nal 
ategory 
onsists of 164.gzip and 188.ammp, appli
ations wherethe volatility pro�le is more 
omplex. We explain these volatility pro�les ingreater detail in the next se
tion, and des
ribe our more ad ho
 methodologyto determine good sampling periods for these appli
ations.4.6 Explaining and handling non-monotoni
 volatilitypro�lesThe variety of volatility pro�les in Figures 4.7 and 4.8 bears somes
rutiny. We began this 
hapter with the assumption that the damping e�e
tof aggregation would 
ause volatility to monotoni
ally drop with in
reasingsampling period. However, our results show that this is not always the 
ase;164.gzip and 188.ammp have parti
ularly 
omplex, non-monotoni
 volatilitypro�les. These phenomena are explained by the dis
rete set of sampling pe-riods available to us, and the intera
tion of these dis
rete points with theintrinsi
 periodi
ity of an appli
ation.At a high level an appli
ation 
onsists of nests of loops that a

ess dif-ferent data stru
tures in di�erent ways. The a

ess pattern of a given data62
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.stru
ture in a given loop may 
ontribute a 
omponent with a 
ertain approx-imate period to the phase behavior of the data stru
ture. Combining all theintera
ting periodi
 
omponents 
orresponding to a data stru
ture yields theoverall phase behavior of that data stru
ture. If all the 
omponents for a datastru
ture have relatively low time periods and high frequen
ies, we expe
taggregation at high sampling periods to smooth out their disparate periodi
e�e
ts. If a stream 
ontains a 
omponent with a substantial time period, how-ever, we observe a steeply os
illating volatility pro�le, with troughs at fa
torsand multiples of that time period.Su
h streams with 
oarse-grained periods make it more diÆ
ult to se-le
t a sampling period, requiring volatility measurements at a large numberof values in order to �nd good 
andidates. For example, if a stream is domi-nated by a period of 7 million 
y
les, taking measurements at sampling periodin
rements of 10-million 
ould fail to identify a good sampling period. Bythe time we �nd low volatility (at a sampling period of 70 million 
y
les) we65



may have damped out all phase behavior. Understanding su
h intera
tionsin appli
ation phase behavior is a 
hallenge for future resear
h. In the 
on-text of this study, �nding a low-volatility sampling period required graduallyre�ning volatility measurements for 177.mesa and 188.ammp. As a 
on
reteexample of this, Figure 4.9 shows the phase behavior seen for Depth Bufferin 177.mesa at a sampling rate of 10 million 
y
les. Comparing this 
urve withthat in Figure 4.7
 shows how widely dissimilar di�erent a stream 
an look atdi�erent sampling periods, and how sele
ting a bad sampling period 
an o
-
lude gradual periodi
 patterns. The global phase behavior seen in Figure 4.7
is only observable in a narrow window of sampling periods, from 200 to 300million 
y
les. O�ine phase dete
tion te
hniques that fail to use samplingperiods in this range would show either too many phase transitions or too few,o

luding the more gradual phase behavior in either 
ase. Similarly, onlinephase dete
tion te
hniques that fail to adjust the sampling period would beunable to adapt e�e
tively to the 
hanging requirements of this appli
ation.Summary: The goal of the last 4 se
tions has been to 
ome up with a rig-orous methodology to sele
t a good sampling period at whi
h to view andoperate upon graphs of temporal behavior. Our proposed methodology, basedon a volatility metri
, ful�lls this purpose by 
on
isely summarizing the meritof every point in the state spa
e of possible sampling periods. The next step, ofsele
ting a good sampling period, is more ad ho
. The la
k of full automationis a result of one major fa
tor: eÆ
ien
y 
onsiderations for
e us to maintain66



a lower bound on the granularity at whi
h we 
an vary sampling period. In-tera
tions between this sampling period and intrinsi
 periodi
ities of di�erentstreams for
e us to manually inspe
t phase graphs for some appli
ations ata few low-volatility sampling periods before settling on the period with the
leanest expression of global phase behavior. Our general heuristi
, though,is to sele
t the lowest possible sampling period with a low enough volatility.This 
orresponds to points to the bottom and left in our volatility pro�les.4.7 Results: Phase behavior at a good sampling periodHaving des
ribed in detail the pro
edure for sele
ting a good samplingperiod for ea
h of our appli
ations, we 
an now study the phase behavior ofea
h appli
ation at this appli
ation-spe
i�
 sampling period. The right-handside graphs in Figure 4.7 and 4.8 summarize the phase behavior of the DL1miss 
ount for one major data stru
ture in ea
h of our appli
ations. Ea
h ofthese graphs is labelled with its sampling period of N 
y
les as sele
ted fromthe volatility pro�le on the left, and plots DL1 miss-
ount for a single datastru
ture per N 
y
les.Our results 
an be broken down into three 
ategories. First, appli-
ations with no phase behavior past initialization: 179.art, 183.equake, and300.twolf. Se
ond, those with simple phase behavior between a well de�ned setof phases with easily-dis
erned boundaries: 164.gzip, 181.m
f and 188.ammp.Third, more 
omplex 
urves with poorly de�ned phases and fuzzy phase bound-aries: 175.vpr, 177.mesa and 256.bzip2.67
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Categories 2 and 3 both 
ontain appli
ations with phase inversions,where a di�erent data stru
ture 
ontributes the most 
a
he misses in ea
hphase. Figure 4.10 shows the phase behavior of the major data stru
tures inthose of our appli
ations with su
h inversions { 164.gzip, 175.vpr and 181.m
f.We use this data on phase transitions and inversions in these appli
ations todistill ea
h of our appli
ations down to a 
on
ise des
ription of their majora

ess patterns.4.8 Results: Translating phase behavior into a

ess pat-ternsThe phase behavior of an appli
ation 
an be used for a variety of pur-poses as detailed in the next se
tion. In this disseration we use it to help drivethe design of the TwoStep prefet
h system in the se
ond half of this disser-taion. Combining our insights from DTra
k with 
ode pro�les allows us toidentify the di�erent a

ess patterns in ea
h phase, and the roles of di�erentdata stru
tures where inversions o

ur. By manually 
orrelating 
ode pro�les,the data pro�les generated by DTra
k, and the phase behavior data from theprevious se
tion, we are able to 
on
isely summarize the major a

ess patternsin ea
h of our appli
ations.� 164.gzip 
onsists of alternating phases that read a se
tion of input datainto a bu�er, and 
ompress the 
ontents of the bu�er. Both phases havesequential a

ess patterns with lots of spatial lo
ality.69



� 175.vpr 
onsists of two data stru
tures: a heap of obje
ts, ea
h 
ontaininga rr node. The heap is a

essed in a halving or doubling stride, whilerr nodes are more irregular. The interleaving of a

esses to the two ishighly data driven.� 179.art 
onsists of two 2-D arrays: bus and tds. Both are a

essedsimultaneously and sequentially.� 181.m
f 
onsists of alternating phases of depth-�rst-sear
h over a sub-tree of nodes, and heap sort over a heap of ar
s.� 183.equake 
onsists of regular sequential a

ess over several 3-D arrays.� 188.ammp 
onsists of a linked list traversal through atomlist, inter-spersed with a pass of mu
h more irregular a

ess every 12-15 iterationsin order to update 200 pointers to spatially neighboring atoms.� 256.bzip2 performs irregular indire
t array a

esses over three distin
tarrays | zptr, blo
k, and quadrant | using indi
es in one array toa

ess another.� 300.twolf 
ontains a single phase with a 
omplex a

ess pattern summa-rized earlier in Figure 1.2, interleaving spatial, pointer and indire
t arraya

ess.These a

ess patterns drive the design of several aspe
ts of the TwoStepprefet
h system in the se
ond half of this dissertation. These aspe
ts in
lude70



the basi
 insight that su
h a wide variety of te
hniques requires 
ompiler-driven poli
ies to determine what to prefet
h, the design of the ISA for theTwoStep prefet
h 
ontroller, a quantitative analysis of the timing 
onstraintson dependent prefet
hes to determine that the 
ontroller must be pla
ed atthe L2, and the need for auxiliary stru
tures and eÆ
ient 
ow 
ontrol in orderto perform prefet
hing into the DL1. We explain these 
onsiderations in moredetail in the next 
hapter.4.9 SummaryAs 
omputers have be
ome 
heaper and more a

essible the trend inthe last 30 years has been for appli
ations to grow more diverse (with new 
at-egories like streaming media and personal produ
tivity), more 
omplex (wordpro
essors 
he
k grammar and also perform spee
h re
ognition and synthesis)and more memory-intensive. These trends are likely to 
ontinue in future: thenumber of appli
ations running 
on
urrently on a system, the variety of appli-
ations, and the variety of phase behaviors in an appli
ation are all likely toin
rease. In the fa
e of these trends, one-size-�ts-all heuristi
s are insuÆ
ient,and adaptive approa
hes in
rease in importan
e.Our response to these trends has been a detailed 
hara
terization ofnine appli
ations with a wide variety of a

ess patterns, �rst de
omposing theiraggregate memory hierar
hy behavior by data stru
ture in the previous 
hap-ter, and then further de
omposing these results by global program-exe
utionphase. Our detailed 
hara
terization yields a 
on
ise summary of the major71



a

ess patterns that we use to drive the design of TwoStep in the rest of thisdissertation.While we fo
us on a single appli
ation for this detailed 
hara
teriza-tion, our novel methodology methodology 
an be applied to systems resear
hin a variety of ways. In the past, identifying phase behavior has been useful inseveral areas, su
h as adaptively varying pro
essor issue width or 
a
he 
apa
-ity [6, 86℄. Our data shows that augmenting these past online approa
hes withways to adaptively tune the granularity of phase transition de
isions will in-
rease their e�e
tiveness. Tuning phase granularity online is an open problemthat will need to be addressed in future. In o�ine phase analysis, 
ombin-ing prior implementations with data stru
ture de
omposition and the 
orre
tsampling period 
an provide a more rigorous framework for phase analysis andmore sophisti
ated insight into many areas of appli
ation behavior.
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Chapter 5TwoStep: Pre
omputation-based prefet
hingwith lightweight throttling
Our study of data stru
tures and phase behavior in di�erent appli
a-tions shows the wide variety of a

ess patterns modern systems have to dealwith. The se
ond half of this dissertation des
ribes and evaluates our approa
hto appli
ation-driven prefet
hing, a pre
ise set of me
hanisms that allow indi-vidual appli
ations to be optimized at runtime a

ording to their needs anda

ess patterns. Our prefet
h system is 
alled TwoStep. TwoStep 
ombines
ompiler-generated pre
omputation threads, a prefet
h 
ontroller in the L2that runs ahead of the main program, and lightweight me
hanisms for 
ow-
ontrol and throttling. It is designed to work in the presen
e of truly 
omplexa

ess patterns interleaving pointer and spatial a

ess that prior approa
heshave struggled with. In the rest of this 
hapter, we des
ribe the 
hallengespresented by su
h appli
ations to previous approa
hes, des
ribe the designde
isions that led to TwoStep, and provide initial results over a set of hand-
rafted kernels for four of our appli
ations in order to show the soundness ofthe basi
 mi
roar
hite
ture design.
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5.1 Drawba
ks in past approa
hesA variety of me
hanisms have been used in prior prefet
hing studies.We now survey the prior work on prefet
hing in terms of its 
onstituent me
h-anisms separated along four dire
tions: where a prefet
h originates, what toprefet
h, when to prefet
h it, and where to prefet
h to. The pro
ess of thesurvey re
apitulates the rationales for our design de
isions for TwoStep.Prefet
h origin: There are three broad 
hoi
es in de
iding where prefet
hesshould originate: in the main pro
essor as part of the appli
ation program [12,41, 56, 59℄, in the main pro
essor as a separate thread [11, 66, 93℄, or in thelowest level of the 
a
he hierar
hy fa
ing main memory [47℄. While the latterrequires more overhead and book-keeping to or
hestrate, it has an advantagethat DTra
k tells us is 
ru
ial: it redu
es the laten
y between dependentprefet
hes. Sin
e prefet
hes have to go only one way from L2 to pro
essor,both baseline laten
y and queuing delay due to bandwidth 
onstraints areminimized. The 
ost is additional hardware 
omplexity.What to prefet
h: There are 4 broad 
hoi
es in de
iding what to prefet
h:addresses spatially 
lose to re
ent addresses [12, 55, 59℄, re
ently-fet
hed 
a
he-lines for pointers [23℄, pattern dete
tion tables (stride or address-
orrelation) inhardware [40, 41℄, and �nally 
ompiler-generated addresses [56, 59℄. Of these,the �rst three are tuned to narrow varieties of a

ess-patterns; responding toarbitrarily 
omplex a

ess patterns requires 
ompiler intervention. The 
ost is74




ompiler 
omplexity. Also, 
ompiler-based prefet
h s
hemes in the past haveoften struggled with the next de
ision of prefet
h timing.When to prefet
h: There are two opposing 
onstraints on timing prefet
hes:prefet
hes need to o

ur early enough relative to use to overlap their entirelaten
y. They also need to o

ur 
lose enough to the use not to evi
t moreproximally-useful data and 
ause 
a
he pollution. Past approa
hes on tim-ing prefet
hes have largely been 
onstrained by the design de
ision of whatto prefet
h: 
ompiler-based approa
hes [56, 59℄ have relied on the 
ompilerto time prefet
hes as well, resulting in brittle strategies that 
annot adaptto 
hanging runtime requirements; hardware-based approa
hes [40, 41℄, havestruggled to issue prefet
hes early enough sin
e the mi
roar
hite
ture's view ismore lo
al than a 
ompiler's. There has been re
ent work on issuing systemsof prefet
hes [55℄, often under 
ompiler guidan
e [97, 99℄ rather than singleprefet
hes at a time in order to in
rease available sla
k. This approa
h is themost promising among the alternatives. However, the 
hallenge is to meet
on
i
ting timing 
onstraints without running into either the drawba
ks ofsoftware approa
hes (rigid strategies) or hardware ones (overhead in dete
t-ing and avoiding pollution). The prioritization de
ision between independentsequen
es of prefet
hes [22, 102℄ 
an also 
ause design 
omplexity.Where to prefet
h to: This de
ision presents 3 major options: prefet
h tothe L2, prefet
h to the L1 or prefet
h to an auxiliary stru
ture 
onne
ted to the75




a
hes. Prefet
hing to the L1 is a 
hallenge be
ause its small 
apa
ities in
reasethe risk of pollution. As a result, most re
ent approa
hes have prefet
hed onlyto L2. Spatial prefet
h s
hemes have explored prefet
hing to an auxiliarystru
ture 
alled a stream bu�er [42, 85℄ in order to avoid L1 pollution, butat the 
ost of a slightly in
reased laten
y somewhere along the 
riti
al pathof 
a
he a

esses. Stream bu�ers impose ordering 
onstraints on the use ofprefet
hes, however; as a result they have not been used with su

ess forirregular appli
ations.This analysis highlights the issues in prefet
hing for highly irregulara

ess patterns. We would like to have the 
ompiler sele
t what to prefet
h butde
ouple the de
ision from prefet
h timing. We would like to issue prefet
hesfar in advan
e from the L2 but allow the pro
essor to 
ontrol the prefet
hthread to avoid pollution. We would like to prefet
h to L1 but avoid pollution.Our key insight is that de
oupling ea
h prefet
h into 2 stages solves all theseproblems with low 
ost in design 
omplexity or overhead. We now des
ribeour aptly-named TwoStep prefet
h s
heme.5.2 An overview of TwoStepFigure 5.1 shows a high-level s
hemati
 for our TwoStep mi
roar
hite
-ture, highlighting the major 
omponents of the prefet
h system - the prefet
h
ontroller in the L2, the FIFO between L2 and DL1, and ISA enhan
ementsto or
hestrate data transfer between FIFO and DL1. TwoStep performs long-range prefet
hing in the L2 under the dire
tion of a 
ompiler-generated prefet
h76
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Figure 5.1: The TwoStep prefet
hing systemprogram, and short-range prefet
hing to or
hestrate the transfer of data intothe DL1 without polluting it. The L2 prefet
h 
ontroller is a simple single-issuein-order pro
essor. A prefet
h program is loaded into the prefet
h 
ontrollerwhen its 
orresponding main program is loaded into the pro
essor. Prefet
hingis triggered when the main program rea
hes spe
i�
 program phases. At thestart of a program phase for whi
h the 
ompiler de
ided to enable prefet
hing,
ompiler-inserted 
ode in the main program initializes various registers in theprefet
h 
ontroller, in
luding the prefet
h PC, and signals the 
ontroller tobegin prefet
hing. At this point the prefet
h 
ontroller begins exe
uting itsloaded program. Load instru
tion types in the prefet
h program (the mostfrequent 
ategory) 
ause the obje
t (with a stati
ally well-de�ned size) in theresult register to be prefet
hed. When su
h an address is not available in theL2, it is requested from main memory and the prefet
h program stalls until77



it returns. When it returns, the prefet
h 
ontroller pushes the obje
t (a �xednumber of 
a
he-lines) onto the FIFO between L2 and DL1 and then repeatsthe pro
ess for the next instru
tion in the prefet
h program. Obje
ts pushedto the FIFO wait to rea
h the head of the queue. Pull and load instru
tions inthe main program then respe
tively transfer the obje
t to the DL1 and startusing it. Data in the FIFO is virtually tagged, and the prefet
h 
ontroller hasa

ess to a private TLB. TLB misses 
ause the prefet
h program to stall justlike any other ex
eptional 
ondition.Rationale: This design provides a better solution to several issues that are
hallenging to previous studies. The prefet
h program allows the 
ompiler toeÆ
iently en
ode what must be prefet
hed, and to handle arbitrarily 
om-plex 
ombinations of interleaved spatial prefet
hing and pointer-
hasing. The
ompiler en
odes this information without 
onstraining hardware on whento initiate prefet
hes, allowing hardware to manage resour
es better and is-sue prefet
hes in a timely manner when resour
es are free. In pra
ti
e, theprefet
h program is able to run far ahead of the main program. Running aheadis feasible be
ause there is no possibility of 
a
he pollution, and the prefet
hprogram is throttled on a simple 
ondition - when the FIFO �lls up. The �naltransfer between FIFO and DL1 is initiated by pull instru
tions at the start ofloop iterations that spe
ify only how many 
a
he-lines to transfer, not what itmust 
ontain. In the 
ommon 
ase, this allows the footprint of ea
h iterationto be brought into the DL1 ahead of its use. In the worst 
ase, pull instru
-78



tions avoid deadlo
k when the FIFO 
ontains useless data, while limiting thepollution in the 
a
he to a stri
t upper bound. Prioritization is no longer anissue sin
e the 
ompiler expli
itly sequen
es prefet
hes.5.3 The prefet
h 
ontrollerWe now provide a detailed des
ription of the TwoStep mi
roar
hite
-ture in this and the next se
tion, enumerating alternatives and design de
isionsat important points. We designed TwoStep to be simple, with an orthogonaland parsimonious ISA, while making the 
ompiler's 
ode generation task easierand mat
hing the ISA to 
ommon patterns seen in our 
hara
terization usingDTra
k.We begin with the L2 prefet
h 
ontroller, the point of origin of ea
hprefet
h in TwoStep. The prefet
h 
ontroller re
eives two sets of inputs: aprefet
h program divided into kernels, and initial register values before runninga spe
i�ed kernel. The prefet
h program is loaded into the instru
tion store onappli
ation startup, while register initialization is performed under pro
essor
ontrol at the start of di�erent program phases. In the rest of this se
tion weassume both program and register values have been initialized, and des
ribethe work
ow for a single instru
tion in the prefet
h program. Initialization
onditions are spe
i�ed in the next se
tion.Table 5.1 des
ribes the ISA of the TwoStep prefet
h 
ontroller. Theinstru
tions in TwoStep's ISA operate on 32 word-length integer registers, onePC register and immediate operands. TwoStep's workhorse instru
tions are79



Fmt Instru
tion Semanti
sarith 2 Æ 2 f+; �;%;&; jgf add;mul;mod; and; orgI arith Rd; Rs; offset; size Rd  Rs Æ offset � 2sizeI arithp Rd; Rs; offset; size Rd  Rs Æ offset � 2size; prefet
hRdII arith2 Rd; Rs; Rt; size Rd  Rs ÆRt � 2sizeII arith2p Rd; Rs; Rt; size Rd  Rs ÆRt � 2size; prefet
hRdI load Rd; Rs; offset; size Rd  Rs + offset � 2size; prefet
hRd;Rd  [Rd℄I loadp Rd; Rs; offset; size Rd  Rs + offset � 2size; prefet
hRd;Rd  [Rd℄; prefet
hRdII load2 Rd; Rs; Rt; size Rd  Rs +Rt � 2size; prefet
hRd;Rd  [Rd℄II load2p Rd; Rs; Rt; size Rd  Rs +Rt � 2size; prefet
hRd;Rd  [Rd℄; prefet
hRdIII jeq target; Rs; offset if Rs == offset: RPC = targetIV jeq2 target; Rs; Rt if Rs == Rt: RPC = targetIII jlt target; Rs; offset if Rs < offset: RPC = targetIV jlt2 target; Rs; Rt if Rs < Rt: RPC = targetIII jle target; Rs; offset if Rs <= offset: RPC = targetIV jle2 target; Rs; Rt if Rs <= Rt: RPC = targetnext ++ FIFO:tailInstru
tion formats (24-bit instru
tions):I Op
ode (5) Rd (5) Rs (5) size (3) offset (6)II Op
ode (5) Rd (5) Rs (5) size (3) Rt (5)III Op
ode (5) Rs (5) target (8) offset (6)IV Op
ode (5) Rs (5) target (8) Rt (5)Field details:Field Width (bits) En
oding Addressing modeRs; Rt; Rd 5 Unsigned Registeroffset 6 2's 
omplement Immediatesize 3 2's 
omplement Immediate[x℄ - Unsigned Indire
tTable 5.1: The ISA for TwoStep's prefet
h 
ontroller.80



C statement TwoStep equivalent++i; add Ri; Ri; 1; 0
 = a + b; add2 R
; Ra; Rb; 0
 = &Arr[a℄; add2 R
; RArr; Ra; 0int Arr[℄; 
 = Arr[a℄; load2 R
; RArr; Ra; 2 ==22 == sizeof(int)int* Arr[℄; 
 = Arr[a℄; load2p R
; RArr; Ra; 2
 = &a ! fld; addp R
; Ra; offset(fld); 0
 = a ! fld; load R
; Ra; offset(fld); 0Obj* 
; 
 = a ! fld; loadp R
; Ra; offset(fld); 0Table 5.2: Some 
ommon a

ess patterns translated into the TwoStep ISA.of two major varieties: arithmeti
 and load instru
tions. Both have a uniformformat: Op Rd; Rs; f; size (5.1)Ea
h instru
tion s
ales f by an obje
t-size fa
tor 2size, 
ombines theresult with register Rs, and stores the result in register Rd. f may be eithera se
ond register (Rt) or a signed immediate operand (o�set). There are �vevarieties of arithmeti
 operations: arithmeti
 addition, multipli
ation, andremainder; and logi
al 
onjun
tion and disjun
tion. Subtra
tion is providedusing negative o�sets, while logi
al left- and right-shifts are provided usingpositive and negative size exponents, respe
tively.A

essing main memory is the fundamental goal of TwoStep, and theISA provides two major ways to prefet
h data into the L2. The �rst is the loadinstru
tions, whi
h a
t like the 
orresponding add instru
tion using indire
taddressing. Indire
t addressing is implemented by issuing an L2 
a
he-line-81



// R1: root// R2: value being sear
hed.loop:jeq 
ontinue, R1, 0load R3, R1, node_value, 0 // R3 = R1->value;jeq 
ontinue, R3, R2jlt else, R3, R2then: load R1, R1, node_left, 0 // R1 = R1->left;jeq loop, R1, R1 // un
onditionalelse: load R1, R1, node_right, 0 // R1 = R1->right;jeq loop, R1, R1
ontinue:Figure 5.2: A simple TwoStep kernel to perform binary sear
h.aligned prefet
h to main memory if ne
essary, waiting for the prefet
h to re-turn, and then performing a simple 
opy from L2 into Rd. Se
ond, arithmeti
and load instru
tions both have variants | denoted by the p suÆx | thatprefet
h the 
ontents of Rd from main memory after 
omputing Rd. These twote
hniques are 
ombined in the loadp instru
tion, whi
h performs a simple add,prefet
hes Rd, performs the re
ursive indire
t a

ess Rd = [Rd℄, and prefet
hesRd again. These steps are performed serially, and ea
h step waits for prefet
hesto �nish exe
uting before pro
eeding to the next step. All prefet
hes are per-formed on virtual addresses; in our experiments, we use a physi
ally indexedphysi
ally tagged (PIPT) L2 
a
he, and we therefore provide the prefet
h 
on-troller with a TLB for translation. TwoStep prefet
hes are treated just likedemand fet
hes be
ause of their near-perfe
t a

ura
y | they are not pri-82



oritized di�erently, and they are fet
hed into the most re
ently used (MRU)way of the L2. Table 5.2 summarizes the di�erent varieties of prefet
hes pos-sible in the TwoStep ISA by mapping them to high-level C a

ess patterns.For example, addp 
orresponds to strided prefet
h, while loadp 
orresponds topointer prefet
h. The di�eren
e between add/load and addp/loadp is primarilywhether the destination op
ode is a pointer that is dereferen
ed in the 
urrentkernel. In addition to arithmeti
 and load instru
tions, the TwoStep ISA 
on-tains two additional instru
tions: 
ontrol instru
tions and the novel next in-stru
tion. The 
ontrol instru
tions are straightforward, 
onsisting of two va-rieties of 
onditional bran
h to target depending on 
omparison between thetwo operands. The next instru
tion is used for 
ow 
ontrol and explained inthe next se
tion. Figure 5.2 shows a simple prefet
h program with a singlekernel | to perform binary sear
h.5.4 Flow 
ontrol: pull and nextThe prefet
h 
ontroller in the previous se
tion prefet
hes only to L2 and
an run arbitrarily far ahead of the main program on the pro
essor, in
reasingthe risk of 
a
he pollution. In order to address both drawba
ks, we add a FIFOstru
ture between DL1 and L2, with a width of one DL1 
a
he-line. Everyinstru
tion in the TwoStep ISA knows how many 
a
he-lines it will prefet
hand only begins exe
ution if there is room for an equivalent number of DL1
a
he-lines in the tail of the FIFO. Ca
he lines in the head of the FIFO are83




onsumed by pull instru
tions in the main program, whi
h 
onsume 
a
he-lines from the head of the FIFO and transfer them into the MRU ways of theDL1, 
ausing evi
tions as ne
essary. The �rst 
a
he-line returned by a Pullinstru
tion takes 4 
y
les, and every subsequent 
a
he-line takes 1 
y
le.The e�e
t of the pull instru
tion on 
ow 
ontrol is non-trivial. Theobvious option is to give a pull instru
tion the format pull x, where x is animmediate operand. However, su
h an approa
h implies that the number of
a
he-lines asso
iated with a loop iteration must be a stati
 
onstant. Everyprefet
hed loop must have the same 
a
he footprint along all paths. There aretwo ways to maintain this invariant:1. Insert extra pulls at ea
h bran
h of 
onditionals with unbalan
ed foot-prints. This approa
h introdu
es signi�
ant overhead in the instru-mented appli
ation sin
e nested 
onditionals are extremely 
ommon. Wequi
kly dis
arded this option.2. Rely on the 
ompiler to 
ount footprints along di�erent paths, to insertthe largest possible footprint for a loop, and to insert padding push in-stru
tions (addp < re
entregister >; 0) into some paths of the prefet
hprogram. This approa
h 
auses extra overhead in the prefet
h program;as we show later, this overhead is not signi�
ant. However, it also 
ausesunne
essary pulls throughout an appli
ation, and that signi�
antly im-pa
ts the laten
y of pulls into DL1. Another major drawba
k is the
84



in
rease in 
ompiler 
omplexity ne
essary to tra
k footprints for ea
hpath in a loop iteration.Sin
e neither option is e�e
tive, we 
onvert the pull instru
tion to take noop
odes but instead maintain the 
ount of 
a
he-lines to pull in hardware.Our hardware for maintaining pull 
ounts 
onsists of two pie
es: a se
ond,
ount FIFO to maintain 
ount information, and the next instru
tion in theTwoStep 
ontroller ISA. Every push to the main FIFO from the prefet
hprogram in
rements the 
ounter at the head of the 
ount FIFO, while nextinstru
tions at the start of every loop iteration in the TwoStep prefet
h kernelbump up the pointer to the tail of the FIFO, 
reating and initializing a new
ount. Pull instru
tions now read the head of the 
ount FIFO to determine thenumber of 
a
he-lines to transfer. The spa
e overhead for this enhan
ementis minor, a few bits for every 
a
he-line of FIFO 
apa
ity (< 32 bytes in thebaseline 
ase). There is no time overhead sin
e the 
ompiler guarantees the
ount to be at least 1, and reading the 
ount FIFO 
an be overlapped withthe transfer of the �rst 
a
he-line.Abnormal situations: So far we have addressed the 
ommon 
ase in theexe
ution of a prefet
h kernel: the prefet
h kernel spends less time per iterationthan the main program and thus keeps the FIFO o

upied. Periodi
ally theFIFO �lls up and 
auses the prefet
h program to stall until there is room.There are two abnormal ex
eptions to 
onsider: when the prefet
h threadgenerates invalid prefet
hes, and when it falls behind the main program. The85




hallenge in ea
h 
ase is �rst to maintain syn
hronization between main andprefet
h programs, and se
ond to avoid polluting the 
a
he. Prefet
hes toinvalid addresses do not stall the prefet
h thread; instead the prefet
h threadinserts invalid 
a
he-lines into the FIFO in order to maintain syn
hronization.When the prefet
h thread falls behind the main program the FIFO emptiesout. Subsequent pulls in
rement a 
ounter when they are unable to pop itemso� the FIFO. The 
ounter provides the prefet
h program with some sla
k to
at
h up with the main program, as future 
alls to next prefet
hes de
rementthe 
ounter rather than push items on the pull-
ount FIFO. If the 
ounterdrops ba
k to zero the prefet
h thread 
an start pushing items onto the FIFOagain. If the 
ounter instead saturates to some maximum level, usually FIFO
apa
ity, the prefet
h thread is aborted.5.5 Maintaining 
oheren
eTwoStep maintains a 
opy of a program's data in the FIFO; it is pos-sible for this data to be
ome stale in some situations. For example, 
onsider as
enario where the main program fet
hes, writes to and and evi
ts a 
a
he-linefrom the DL1 between the time that 
a
he-line is pushed into the FIFO bythe prefet
h 
ontroller and the time it arrives at the head of the FIFO and istransferred to the DL1. The main program 
ould now end up reading staledata. Handling 
oheren
e requires me
hanisms and poli
ies for dete
tion andre
overy. There are two broad te
hniques to dete
t a 
oheren
e 
on
i
t be-86



Instru
tion Semanti
spull Transfer 
a
he-lines from FIFO to DL1 as des
ribedin Se
tions 5.4 and 5.5.r
opy Rd  Rp Copy the 
ontents of pro
essor register Rp to TwoStepregister Rdstart p
 Copy immediate �eld p
 into TwoStep PC register.Table 5.3: ISA extensions for the main general-purpose pro
essor.tween 
a
he and FIFO: �rst, s
an the FIFO for dupli
ates when pushing, andse
ond, to s
an the FIFO for dupli
ates when pulling. Similarly, re
overingfrom a 
on
i
t presents two options: either 
ush the FIFO, invalidating all its
ontents without 
hanging FIFO size in order to preserve syn
hronization, orinvalidate 
on
i
ting 
a
helines. Both dete
tion and re
overy 
an be speededup by using a hardware hash-table for �ltering 
he
ks. Using su
h a hash-tableimplementation implies that sear
h is fast, and therefore invalidating just 
on-
i
ting 
a
helines is uniformly preferable to invalidating the entire 
ontents ofthe FIFO. Later in this 
hapter we examine the e�e
ts of 
oheren
e 
on
i
ts onthe bene�ts of TwoStep in an idealized manner, without 
ommenting furtheron the low-level me
hanisms for 
oheren
e dete
tion and re
overy.5.6 Initializing registers before kernel exe
utionWe 
on
lude our des
ription of TwoStep with a des
ription of the pro
e-dure for initializing a prefet
h thread and a
tivating it. Table 5.3 summarizesthe extensions to a general-purpose pro
essor ISA required by TwoStep. De-sign de
isions behind the pull instru
tion has already been 
overed in detail.87



In addition, the pro
essor requires two types of instru
tions to setup and ki
ko� prefet
h programs for di�erent program phases. The �rst is r
opy to 
opypro
essor registers into their 
ounterparts in the L2 
ontroller, supplying theprefet
h kernel with all ne
essary inputs. After some number of r
opy instru
-tions, the main program then exe
utes a start instru
tion to set the PC registerof the L2 
ontroller and 
ommen
e prefet
h kernel exe
ution. Overheads inthese latter two instru
tions are easily tolerated; in our implementation, ea
hr
opy and start instru
tion takes up 10 instru
tion slots in the main pro
es-sor pipeline without impa
ting prefet
h thread performan
e. This overheadshould be a 
onservative estimate of the most likely implementation for theseinstru
tions in a produ
tion setting | using memory-mapped I/O.5.7 Intera
tions between pulls and sto
k 
ompilersOne issue arose in our implementation be
ause we 
hoose to instrumentthe main program at the level of the sour
e 
ode just like with DTra
k, ratherthan in the binary. As a result, pull instru
tions within loop nests 
an perturbthe 
ode a 
onventional 
ompiler generates. Sin
e pull instru
tions o

ur in theinner loops of the appli
ation, any su
h perturban
e is likely to 
ause signi�
antdegradation in performan
e. Sin
e the Alpha 
ompiler we use is not awareof their semanti
s, this en
oding has 
hanged several times to work aroundidiosyn
ra
ies in optimization poli
ies. Prior versions of the pull instru
tion
aused the 
ompiler to suppress loop unrolling and software pipelining for tightloops 
ontaining pull instru
tions. Our 
urrent version maintains pointers to88



Feature Size/Value#Registers 32Instru
tion store 2KBFIFO 
apa
ity 2KBPull laten
y 4 for �rst 
a
he-line1 
y
le for subsequent 
a
he-linesPrefet
h 
ontroller TLB 
apa
ity In�niteTable 5.4: Baseline TwoStep 
on�guration. Pro
essor 
on�guration in Ta-ble 3.1.ea
h of the memory-mapped addresses used for instrumentation, in order tokeep the 
ompiler from hoisting these loop-invariant stores out of the loop theyare intended for. In a produ
tion setting the 
ompiler's poli
ies will have tobe modi�ed to ignore pull instru
tions.5.8 Experimental MethodologyIn order to assess the feasibility of TwoStep, we evaluate it over 8 ofour appli
ations in the rest of this disseration. Ben
hmark 
hoi
e was largelydriven by the 
hara
terization detailed in Chapter 3: 300.twolf, sphinx, and181.m
f are irregular appli
ations with the most intensive traÆ
 to memory;183.equake is a regular memory-intensive appli
ation; 179.vpr and 188.ammpare irregular appli
ations with moderate memory traÆ
; �nally, 164.gzip and179.art are regular appli
ations with low memory traÆ
. This 
hapter's initialexploration using hand-
rafted prefet
h kernels further fo
usses on just 4 ofthese appli
ations: 179.art, 181.m
f, 300.twolf, and sphinx. We run these ap-pli
ations on a version of sim-alpha [25℄ enhan
ed with an implementation of89



TwoStep prefet
hing. Hints are used to implement pulls as well as demar
atethe endpoints of ea
h simulation interval in terms of high-level loop iterations.We spe
ify high-level simulation start- and end-points for ea
h appli
ation inorder to make 
onsistent measurements a
ross di�erent binaries with and with-out pull instru
tions. Both baseline and transformed 
odebases are 
ompiledwith the aggressive Alpha GEM 

 
ompiler [75℄. Table 3.1 earlier summarizedthe baseline demand-fet
hed ma
hine 
on�guration; Table 5.4 now enhan
esthis 
on�guration with a baseline TwoStep 
on�guration, spe
ifying the size ofthe instru
tion store, the default FIFO 
apa
ity, Pull laten
y, and TLB 
apa
-ity. Sensitivity results at various points in the next 3 
hapters will motivatethese design 
hoi
es.Sele
ting a baseline ma
hine 
on�guration: Our baseline in
ludes noprefet
hing in the data 
a
hes. This de
ision was made for two reasons:1. Neither the Alpha 21264 nor most past literature on prefet
hing in
ludedhardware prefet
hing in the baseline. By following pre
edent, we allow
onvenient 
omparison with prior work.2. Not all prefet
h s
hemes 
an be favorably 
ombined with ea
h other.Subtleties in the design of di�erent prefet
h s
hemes a�e
t intera
tionsbetween them. By using a purely demand-fet
hed baseline, we avoidfavorable or unfavorable perturbations to our results. This approa
hallows us to safely explore intera
tions with other prefet
h s
hemes inChapter 7. 90



Comparing TwoStep with other prefet
h te
hniques: We now brie
youtline our methodology for 
omparisons with other prefet
h te
hniques, bothusing hand kernels in the rest of this se
tion, and using the TwoStep 
ompilerin Chapter 7. The TwoStep 
ompiler is based on C-to-C translation usingthe C-Breeze 
ompiler toolkit [30℄, 
oupled with the same optimizing AlphaGEM 

 
ompiler in the ba
kend. Our major 
omparisons are with Taggedprefet
h [87℄ and a family of region prefet
hing te
hniques: S
heduled RegionPrefet
hing (SRP) [55℄ and Guided Region Prefet
hing (GRP) [99℄.Tagged prefet
h prefet
hes the next 
a
he-line on an L2 
a
he miss,and it marks 
a
he-lines as prefet
hes using an extra tag bit to mark non-spe
ulative data. This bit is set for demand fet
hes on initial fet
h, and forprefet
hes on their �rst non-spe
ulative use. This approa
h allows limitedlookahead and 
on
omitant improvement for simple spatial patterns, but failsto improve more irregular appli
ations.SRP 
onsists of a s
heduler at the L2 that prefet
hes data from mem-ory in 4KB-aligned regions around addresses 
ausing 
a
he misses. The 
owof prefet
hes is tuned to not slow down the pro
essing of demand fet
hes; de-mand fet
hes are prioritized over prefet
hes in the 
a
he hierar
hy (old andunpro
essed prefet
hes are silently dropped), and prefet
hes are pla
ed in theLRU way of the L2 to redu
e 
a
he pollution for appli
ations with irregu-lar a

ess patterns. GRP augments these region prefet
h me
hanisms with
ompiler-generated hints for pointer as well as region prefet
hing that serve toimprove a

ura
y and eliminate region prefet
hing in irregular appli
ations.91



The te
hniques we 
ompare TwoStep with span the spe
trum from thestate of the art in produ
tion hardware to the state of the art in resear
hprototypes. Tagged prefet
h is a simple hardware me
hanism that exempli-�es me
hanisms in
luded in many produ
tion pro
essors. As su
h, it pro-vides a 
ommon baseline of produ
tion ma
hines to 
ompare against. Wesele
ted GRP and SRP as our examples of more re
ent resear
h for threereasons. First, we wanted the te
hniques we 
ompare with to be relativelyre
ent, and reasonable exemplars of the state of the art, showing sophisti-
ated de
isions for prefet
h sele
tion, timing and pollution-avoidan
e. Se
-ond, we wanted a broad 
overage of both hardware and software te
hniques,and of te
hniques addressing both spatial and pointer prefet
h. Third, wewere 
onstrained by methodologi
al 
onstraints of easily-a

essible infrastru
-ture. Choosing a family of te
hniques allows us to perform 
omparisons a
rossjust two parallel 
ompiler-simulator tool
hains | C-Breeze+TwoStep+sim-alpha and S
ale+Region prefet
h+sim-outorder [99℄ | thereby 
utting downon our infrastru
ture-management overhead and also on the baselines we needto tra
k. While the ma
hine 
on�gurations are largely the same, GRP andSRP use the sim-outorder mi
roar
hite
ture to run Alpha ISA binaries [9℄rather than the detailed model of the Alpha 21264 that we use [25℄. In addition,GRP is 
ompiled for the Alpha ISA using the S
ale resear
h 
ompiler [62℄.
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Feature 181.m
f 300.twolf 179.art sphinxPrefet
h program size 52 37 29 100(1-byte instru
tions)Ca
he-lines pulled per inner loop 3-12 2-11 1 1-7iteration# Phases per topmost iteration 3 1 1 5# Distin
t loop nests 8 1 7 1Max nesting depth 2 3 2 3Table 5.5: Vital statisti
s of our hand-
rafted prefet
h programs5.9 Preliminary evaluation with hand-
rafted prefet
hkernelsThis se
tion summarizes some initial �ndings of our study, using hand-
rafted prefet
h kernels to evaluate TwoStep. We begin with hand-
raftedkernels for two reasons. First, they allow us to explore the potential of our ap-proa
h independent of 
ompiler implementation. These results were generatedbefore the 
ompletion of the 
ompiler implementation as a feasibility study.Se
ond, our hand-
rafted kernels a
t as ben
hmarks for the later 
ompiler im-plementation, and subsequent 
hapters will show that we do well at ful�llingthe potential of TwoStep even though the 
ompiler-generated kernels are verydi�erent.Our �ndings are in two 
ategories. First, we evaluate TwoStep andshow signi�
ant speedups for the irregular appli
ations we sele
ted. Se
ond,we perform various sensitivity analyses in the design spa
e, 
ompare TwoStepwith some prior prefet
hing studies, and analyze our improvements by datastru
ture to 
on�rm our intuitions. Table 5.5 highlights the small size of our93
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Figure 5.3: Improvements with an in�nite FIFOhand-
rafted prefet
h programs and the small footprint of loop iterations, asmeasured by the number of 
a
he-lines pulled in ea
h. Our detailed 
hara
ter-ization of the previous 
hapters now yields a small number of distilled prefet
hkernels that provide substantial prefet
h 
overage in just 1-8 loop nests withless than 100 instru
tions in the TwoStep ISA, ea
h nest at most 3 loops deep.Measuring limit performan
e: We begin by measuring the performan
eof TwoStep relative to the baseline. For this experiment, we 
on�gure TwoStepwith an in�nitely long FIFO so that the prefet
h engine never has to stall towait for the main program to 
at
h up. Pulls have a laten
y of 4 
y
les betweenrequest from FIFO and transfer to DL1. Figure 5.3 summarizes the redu
tionin total 
y
le time after simulating well-de�ned intervals of our appli
ationwith TwoStep enabled. TwoStep shows speedups of between 10 and 15% forour 3 irregular appli
ations. The regular appli
ation 179.art has more minorspeedups, hinting at TwoStep's limitations. We examine more appli
ations inChapter 7 to determine the extent of this issue, and to investigate its 
auses.94
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Figure 5.4: Fra
tion of main memory a

esses remainingFigure 5.4 demonstrates a se
ond strength of TwoStep: we show thatsu

essful prefet
hing may be a

ompanied by redu
tions in the number of a
-
esses to main memory. While most prefet
hing studies at best avoid in
reas-ing aggregate bandwidth requirements to main memory, the high a

ura
y ofTwoStep prefet
hes allows 
a
he-lines to turn dead after their last prefet
hin an interval. This 
ompression of live times in
reases temporal lo
ality, re-sulting in redu
tions in DRAM a

ess 
ounts. These initial results establishthe promise of TwoStep: a

urate and well-timed prefet
hing into the 
a
hehierar
hy for arbitrarily irregular a

ess patterns.Prefet
hing e�e
tiveness: We now analyze the results of Figure 5.3 more
losely in order to understand the sour
e of our speedups. In spite of theredu
tions in 
y
le 
ount, the number of DL1 misses is relatively una�e
tedby TwoStep. To gain a deeper understanding of the 
riti
al path, we tra
k
y
les that the pipeline 
ommits no instru
tions, assigning blame to the datastru
ture of the load at the head of the reorder bu�er. Figure 5.5 summarizes95
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Figure 5.5: Stall 
y
les remaining after TwoStep prefet
hing for the mostfrequently missing data stru
tures (DS1 and DS2), 
ompared to redu
tion inaggregate stall 
y
les due to memorythe number of stall 
y
les redu
ed for ea
h appli
ation on a data stru
turebasis. We show 4 bars for ea
h appli
ation in this �gure, for the top 3 datastru
tures by miss-
ount (the same data stru
tures as in Tables 3.3{3.5), andfor the appli
ation in aggregate. Ea
h bar shows the per
entage of stall 
y
lesremaining after TwoStep prefet
hing is applied to the baseline ma
hine 
on�g-uration. Figure 5.5 shows that pipeline stalls due to major data stru
tures DS1and DS2 are redu
ed. These are the data stru
tures targetted by our prefet
hprograms. The impa
t of these redu
tions on aggregate pipeline stalls dueto memory is, however, markedly lower. We believe that understanding thepre
ise reasons for this di�eren
e | the other data stru
tures that are now
riti
al | will be a fruitful avenue for future resear
h.
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Figure 5.6: Comparison of TwoStep with some prior prefet
hing studies.Comparison with prior studies: Having performed a detailed 
omparisonof TwoStep with a no-prefet
h baseline, we now 
ompare TwoStep with afamily of region prefet
hing te
hniques from prior work. As detailed in theprevious se
tion, our results for region prefet
hing were obtained on a paralleltool
hain to ours; we therefore 
ompare their speedups relative to independentbaselines.Figure 5.6 summarizes the results of our initial 
omparison. For ea
hof our initial appli
ations, we show the redu
tion in 
y
le 
ounts resultingfrom TwoStep and 4 region prefet
h setups: GRP, GRP with only pointer-prefet
h hints enabled, GRP with only region prefet
hing hints enabled, andSRP whi
h provides no hints. TwoStep does substantially better than allthese approa
hes for 300.twolf and sphinx, and as well as the best of themfor 181.m
f, but substantially worse for 179.art. Thus, both GRP and SRPhave poorer 
overage than TwoStep among irregular appli
ations, but providesubstantially better performan
e for regular appli
ations. We return to these97
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Figure 5.7: Sensitivity of speedups to FIFO 
apa
itybipolar results for a more detailed study in Chapter 7.SRP's performan
e largely mat
hes that of GRP, but with lower prefet
ha

ura
y and more pro
igate use of main memory bandwidth. However, thebene�ts of spatial and pointer prefet
hing do not follow super�
ial trends.181.m
f and sphinx are almost purely pointer-based te
hniques, but are im-proved more by the region prefet
hing in GRP than the pointer prefet
hing.These phenomena arise from a

idental intera
tions with the memory allo
a-tor. In Chapter 7 we return to them and argue that su
h a

idental intera
tionsare easily lost due to experimental 
hanges su
h as a larger input set.Sensitivity analysis: The TwoStep design has two major parameters -FIFO 
apa
ity and pull laten
y - that must be realisti
 in order for it tobe feasible. We now evaluate its sensitivity to these parameters. Figure 5.7summarizes the speedups obtained by TwoStep for our appli
ations and the98
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Figure 5.8: The e�e
t of 
oheren
e 
on
i
ts on performan
e. Per
entagesindi
ate fra
tion of false positivessensitivity of these improvements to FIFO 
apa
ity. A 2KB (32-entry) FIFOsuÆ
es to provide most of the bene�t of an in�nite-
apa
ity FIFO, indi
atingthe e�e
tiveness of the FIFO at realisti
 
apa
ities for 
urrent te
hnologies [2℄.Coheren
e: We now evaluate the e�e
t of handling 
oheren
e issues betweenthe 
a
hes in FIFO in TwoStep. Corre
tness is not a�e
ted as our timing-basedsimulation model is independent of the model of fun
tional 
omputation. We
onsider an ora
le implementation that de
ides whether to pull or dis
ard ea
h
a
he-line in the FIFO based on prior stores to that address. We then randomlyinsert false positives in the ora
le's de
isions in order to gauge the sensitivity ofour speedups to 
on
i
ts in the FIFO due to 
oheren
e. Figure 5.8 shows that
oheren
e with an ora
le degrades our speedups by less than 1%. Performan
edegradation is negligible upto 50% false positives (i.e. half the FIFO entriesare invalidated on ea
h store). These results show our s
heme to be robust99
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Figure 5.9: The importan
e of pushing to DL1to 
oheren
e 
on
i
ts, primarily due to the relative infrequen
y of stores inour appli
ations. The 
ase of 100% false positives we 
onsider in more detailbelow.Prefet
hing to L2 vs DL1: Figure 5.9 attempts to tease apart the twinbene�ts of TwoStep - prefet
hing data to the L2 and making it available atthe DL1. It 
ompares two 
on�gurations:1. Normal: A 
onventional TwoStep mi
roar
hite
ture.2. Syn
Only: A modi�
ation to TwoStep where pulls remove 
a
he-linesfrom the FIFO but do not transfer them to DL1.In the latter 
ase, the FIFO a
ts purely as a syn
hronization me
ha-nism, 
ausing the prefet
h 
ontroller to stall when it runs too far ahead of themain program. It is behaviorally very similar to the 
ase of 
oheren
e with100



100% false positives (always 
ush FIFO on store), and our results for these two
on�gurations are identi
al. Figure 5.9 shows that the importan
e of pushingdata to the DL1 varies by appli
ation; 181.m
f and 300.twolf derive more than75% of their speedups from L2 prefet
h, while in sphinx and 179.art more than75% of the speedups is derived from prefet
hing to the Dl1. We explain theseresults in more detail in Chapter 7.5.10 SummaryIrregular appli
ations 
ontain sophisti
ated a

ess patterns. TwoStepprefet
hes for su
h appli
ations by providing simple hardware me
hanisms - aprefet
h engine and a FIFO - that 
an be 
ontrolled by software. The hardwareme
hanisms have useful properties: fewer 
onstraints on prefet
h s
heduling,resistan
e to DL1 pollution, and easy throttling. These improvements area
hieved at the 
ost of some burden to software: the 
ompiler must stati
allymap prefet
hes in the prefet
h program to pulls in the main program, andensure that the two stay syn
hronized. Initial experiments with hand-
raftedkernels show that it performs as expe
ted for irregular appli
ations, but notas well for relatively regular appli
ations. We now des
ribe the 
ompiler-side 
omponent of this thesis before generating results for more appli
ationsand identifying more rigorously the high-level 
hara
teristi
s that in
uen
eappli
ation synergy with TwoStep.
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Chapter 6Compiler support for TwoStep
This 
hapter des
ribes and evaluates 
ompiler algorithms to generateuseful pre
omputation kernels for TwoStep. Our 
ompiler is stru
tured to
onvert from C to C, outsour
ing ba
k-end optimizations to an o�-the-shelfC 
ompiler. It uses information from an interpro
edural pointer analysis, andperforms several 
ontext-sensitive traversals of the whole program, starting atthe beginning of main() and pro
essing fun
tion bodies everytime a 
all tothem is en
ountered.We begin by enumerating the requirements for su
h a 
ompiler, thenuse these requirements to drive a staged tour of the 
ompiler as a series ofre�nements from the top down (Figure 6.1). The major 
hallenge in designingthe 
ompiler is to manage overheads due to pull instru
tions in our major loops.A purely brute-for
e approa
h that tries all possible 
ombinations of the majorloops is infeasible; instead we stage information from di�erent sour
es | looppro�les and sli
e densities | to perform feedba
k-based ba
ktra
king in thesear
h spa
e of loop nest 
ombinations. Figure 6.1 re
e
ts this ba
k-tra
kingoriented ar
hite
ture, des
ribed it in detail in Se
tions 6.1{6.4.After the des
ription, we 
ontrast our 
ompiler to the major prior work102
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Figure 6.1: Overview of the TwoStep 
ompiler as a series of re�nements.
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        while (list) {

                ++counter;
                 leaf(list);
                 list = list−>next;
        }

        doSomething(counter);
}

                 pull;
        jeqi list, 0, exit

       addp list, list, 0, 0

        jeqi list, list, loop
exit:

void leaf (A* a) {
        a−>val = X;
}

void setList (A* list) {
        int counter = 0;
        while (list) {
                ++counter;
                 leaf(list);
                 list = list−>next;
        }

        doSomething(counter);
}

A B C

        addp list, list, next, 0

        pull;

void leaf (A* a) {
        a−>val = X;
}

void setList (A* list) {
        int counter = 0;

loop:

Figure 6.2: A simple C program (A), pull instru
tions added to it (B), and the
orresponding prefet
h program (C). Arrows 
onne
t prefet
hes in the prefet
hprogram with 
orresponding pull instru
tions in the main program.in 
ompiling for pre
omputation and enumerate the major areas where pre-
omputing for TwoStep presents a di�erent set of 
ontraints than 
ompilershave fa
ed in the past. Finally, we perform a 
omprehensive o�ine validationof our 
ompiler's poli
ies, exploring the entire state spa
e for our appli
ationsin sear
h of good sli
es that may have been missed. This analysis provides in-sight into one limitation of pre
omputation-based prefet
hing: when prefet
hbandwidth utilization is 
riti
al in tight loops, it is ne
essary to trade o�prefet
h 
overage for sli
e density. Sli
es that are too dense result in prefet
hkernels that do mu
h of the same work as the main pro
essor, redu
ing theprefet
h thread's ability to run ahead of the main program and therefore itse�e
tiveness.
104



6.1 Goals and requirementsFigure 6.1 illustrates the transformations TwoStep requires. Given ap-pli
ation C sour
es it must emit useful prefet
h kernels in the TwoStep ISAat the L2 
ontroller, and appropriately instrument the main program binaryrunning at the pro
essor. These twin modi�
ations require me
hanisms andpoli
ies for the following:1. Sele
ting loads most likely to 
ause pipeline stalls. We 
all these stati
program lo
ations prefet
h points.2. Sele
ting for ea
h prefet
h point a stit
h point | a lo
ation where pre-
omputation may pro�tably be started, early enough to give TwoStepthe sla
k ne
essary to run ahead, but not so early as to 
ause the prefet
hprogram to grow too bloated, or to be often led astray before the prefet
hpoint is rea
hed.3. Generating the prefet
h program 
orresponding to all the 
omputationne
essary to 
ompute the prefet
h point from the stit
h point.4. Inserting pulls at the start of ea
h loop involved.For an illustration of these transformations, see Figure 6.2. This �gure shows asimple program to operate on a linked list, the pla
es where the 
ompiler needsto insert pulls, and the 
orresponding prefet
h program to run on TwoStep.We use this example at various points in the rest of this 
hapter. The 
ru
ial105



requirements for the 
ompiler are to generate prefet
h programs shorter thanthe 
orresponding parts of the main program so that it runs ahead, and forthe instrumentation in the main program to be lightweight. Also, every pullexe
uted by the main program must do useful work to justify its overhead; the
ompiler must avoid inserting pulls at lo
ations where the prefet
h program isunlikely to have data in the FIFO. In the next three se
tions, we des
ribe thepro
ess by whi
h the TwoStep 
ompiler meets these requirements.6.2 Analyzing the appli
ation by loop 
lusterGiven the above requirements, the 
ompiler's 
ow 
an be de
omposedat the highest level into 3 pie
es as shown in Figure 6.1 a): Loop sele
tionto identify what must be prefet
hed, loop 
lustering to maximize sla
k forthe prefet
h kernel, and 
luster pro
essing to generate at most one prefet
hkernel per loop 
luster. Our �rst step, loop sele
tion, uses one pie
e of easily-obtainable pro�le information | loop 
ounts. To stati
ally 
ompute the deref-eren
e volume: DVloop = Itersloop � Stati
P trsloop (6.1)where Iters is the average number of iterations of this loop per loop entry, andStati
P trs is the path-insensitive 
ount of deref operations in this loop bodyex
luding loops nested within it. We then sort the list of loops by DV , shortlistthe top loops that add up to 90% of total appli
ation DV , and 
ommen
e these
ond step | loop 
lustering. 106
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JFigure 6.3: Appli
ation viewed as a tree of 
ontext-sensitive loops. Shadednodes are shortlisted loops. Three 
lusters are shown. Leaf C does not belongto a 
luster be
ause it has no an
estor in the shortlist.Loop 
lustering: Figure 6.3 depi
ts the 
ompiler's view of an appli
ationduring loop 
lustering. The appli
ation is a tree of loops. The root node rep-resents the entire appli
ation | the body of the main() routine, and all othernodes represent 
ontext-sensitive loops. The 
hildren of ea
h node are loops
ontained within its body. Shortlisted loops are shaded. Fun
tion boundarieshave been elided. The 
ompiler builds up loop 
lusters starting at ea
h leafloop | a loop with no subordinate loops | by s
anning outward adding 
on-tainer loops to the 
luster, o

asionally 
reating a boundary and starting afresh 
luster. Our 
lusters maintain the following invariants:� Ea
h 
luster 
ontains innermost exa
tly one shortlisted loop. If we en-107




ounter a se
ond we start a new 
luster. Leaves without an en
losingshortlisted loop at any level are dis
arded, sin
e they provide insuÆ
ientin
entive for prefet
hing.� Ea
h 
luster 
ontains as many loops as possible both above the short-listed loop. Later phases may subset a 
luster; we give them as mu
h towork with as possible.� We never allow a 
luster to grow past a fun
tion boundary if it is 
alledin multiple 
ontexts in the loop tree and not all of these 
ontexts liewithin a 
luster. More pre
isely, we permit a loop A to be added to the
luster of a subordinate loop B in a di�erent fun
tion f only if 99% ofiterations of loop B (from the loop pro�le) have an an
estor in a 
luster.This 
ondition prevents us from adding the overhead of pulls in 
ontextswhere there will not be a prefet
h kernel running any signi�
ant fra
-tion of the time. Enfor
ing this 
ondition requires a se
ond pass after
lustering to prune bad 
lusters.The rest of the 
ompiler pro
esses these 
lusters in des
ending order of theirDV . DV
luster =XDVloop (6.2)This ensures we prioritize our 
luster 
andidates by expe
ted 
a
hemiss 
ount. The list of 
lusters 
an have overlap and usually does; after a108




luster is su

essfully pro
essed no member or an
estor loop 
an be pro
essedagain. This 
onstraint prunes some 
lusters and eliminates others entirelyfrom 
onsideration.6.3 From loop 
luster to prefet
h kernelAs depi
ted in Figure 6.1 b, pro
essing a 
luster 
onsists of a

epting a
luster of loops as input and emitting at most one prefet
h kernel 
orrespond-ing to it. It 
onsists of three major phases | stit
h point sele
tion, kernel
omputation, and 
ode generation | and one feedba
k path to prune su

es-sive outer loops from a 
luster if the resultant prefet
h kernel is found to betoo dense relative to the main program. We now fo
us on the �rst and third,postponing the des
ription of the kernel 
omputation to the next se
tion.Stit
h-point sele
tion: Given a 
luster of loops, the stit
h point is thepoint in the program to insert stit
h 
ode to trigger the 
orresponding prefet
hkernel. Sin
e stit
h 
ode must trigger pre
isely on
e for every exe
ution of theloop 
luster, a good stit
h point has the following properties:� As a boundary-
ondition initialization, it o

urs outside the loop 
lusteritself.� It dominates the 
luster; every exe
ution of the 
luster should have exe-
uted stit
h-point 
ode.
109



� It does not lie outside the loop 
ontaining the 
luster. Stit
h 
ode mustexe
ute every time the 
luster is entered.� It does not lie before a sibling loop in the loop tree. This preventstoo-early initialization as well as destru
tive overlap between prefet
hkernels.� It does not lie before a sibling fun
tion 
all. Again, this prevents arbi-trary gaps between initialization and prefet
h use. However, this 
on-straint does not ex
lude the possibility of the stit
h point and 
lusterbeing in di�erent fun
tions; the stit
h point may lie further up the 
allsta
k subje
t to previous 
onstraints. If we span a fun
tion boundary,however, we must 
ompute a good stit
h point in every possible 
ontextof the fun
tion.� It o

urs as far before the 
luster as possible subje
t to the previous
onstraints.Figure 6.4 shows our algorithm for sele
ting good stit
h points, taking these
onstraints into a

ount. The individual 
onditions have a one-to-one 
orre-sponden
e with the above properties. We add two points to 
larify the re
ur-sive 
ase when moving the stit
h point up the 
all sta
k. First, we 
an 
learanswerSta
k be
ause we are guaranteed to �nd at least one more dominatingstatement where the stit
h 
ode may be inserted | right before the last 
all.Se
ond, the re
ursive 
all 
annot be passed 
luster itself; it must instead be110



// l is the 
ontext-sensitive statement list of the input programsele
tStit
hPoint(stmt, 
luster, answerSta
k):traversing s upwards from stmt in l:if s dominates 
luster: answerSta
k.push(s)if fun
tion 
all is en
ountered: breakif loop boundary is en
ountered: breakif fun
tion header is en
ounteredand there is more than one 
aller:
lear answerSta
kfor every 
alling 
ontext 
:
luster' = 
orrespondingContext(
luster, 
)stit
h' = sele
tStit
hPoint(
, 
luster', [℄)answerSta
k.push(stit
h')endreturn answerSta
kendendreturn answerSta
k.topend// Usage: sele
tStit
hPoint(
luster, firstStmt(
luster), [℄)Figure 6.4: Stit
h point sele
tion starting at a spe
i�
 statement. Takes a loop
luster as input and returns a list/sta
k of 
ontext-independent statementsafter whi
h stit
h 
ode should be instrumented.
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a 
ontext-sensitive statement 
orresponding to the stati
 
luster but in thesame 
ontext as the 
aller 
.Code generation: On
e a stit
h point is sele
ted and its prefet
h kernel
omputed and found to be not too dense, it remains only to emit the prefet
hkernel in terms of the TwoStep ISA. A simple one-pass 
ode generator suÆ
esfor this purpose, with simple rules for translating ea
h statement type in alowered C form | 
ontaining only ifs and gotos and no more than one binaryoperation and one assignment per statement as shown in Figure 6.5 | intosome sequen
e of TwoStep instru
tions. Our prototype 
ompiler performs noregister allo
ation, assuming an in�nite pool of registers. It also performs noba
k-end optimizations. Later in this 
hapter, we show that these de
isions donot impa
t our evaluation. The only other 
ompli
ation is the book-keepingne
essary to skip past empty basi
 blo
ks without perturbing the global 
ontrolstru
ture of the prefet
h kernel.There are a few rare 
ir
umstan
es where the 
ompiler is 
urrentlyunable to generate 
ode for a prefet
h kernel: if the kernel 
ontains a 
all toa library routine whose body is not available to our whole-program analysis,or if it 
ontains a re
ursive fun
tion 
all. In these 
ir
umstan
es we 
urrentlydis
ard the kernel. Otherwise, we insert the stit
h 
ode 
omputed duringsli
ing (des
ribed below) and insert pulls at the start of ea
h loop in the
luster.
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void setList(A * list) {int 
ounter, __T0, __T1, __T2;{ 
ounter = 0;goto __L0;}{__L0:; if (list == 0) goto __L1;goto __L3;}{__L3:; __T0 = 
ounter + 1;
ounter = __T0;__T1 = leaf(list);list = (*list).next;goto __L0;}{__L1:; __T2 = doSomething(
ounter);}} Figure 6.5: Linked list traversal in lowered C form.
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6.4 Sele
ting a good sli
e for a �xed 
lusterWe now turn to Figure 6.1 
), the �nal 
omponent of the TwoStep
ompiler. On
e again, we divide up the pro
ess of generating kernels from aloop 
luster and �xed stit
h point into three phases | prefet
h point sele
tion,sli
e 
onstru
tion, and a density 
he
k. Sli
es that are found to be too denseare retried after stripping an outer loop from the 
luster as des
ribed in theprevious se
tion. One �nal heuristi
 is to dis
ard sli
es that 
ontain a loopwith a single basi
 blo
k, be
ause all su
h tight loops serve to do is to allowthe main program to 
at
h up with the prefet
h program, without a
tuallyproviding any prefet
hing bene�t. We perform this test after sli
ing be
ausein pra
ti
e su
h really tight loops are often not part of the sli
e even if theyare within the loop 
luster of interest. When we en
ounter them in a sli
e weba
ktra
k to pi
k a di�erent prefet
h point and re
ompute the sli
e.Prefet
h point sele
tion: The prefet
h point of a 
luster is a pointer deref-eren
e to be prefet
hed within the innermost loop of the 
luster. We simplypi
k the �rst su
h statement we �nd, 
he
king that it 
annot be hoisted outof the innermost loop, and avoiding the innermost-loop indu
tive variable ifpossible. We rely upon later 
he
ks for sli
e density to ba
ktra
k and try adi�erent prefet
h point if ne
essary.Sli
e 
omputation: Given a prefet
h point and a stit
h point we 
an now
ompute the ba
kward sli
e starting at the prefet
h point. Figure 6.6 illus-114



trates the ne
essary inter-pro
edural transformation. The sli
ing algorithm
onsists of starting at the prefet
h point and traversing ba
k the interpro
edu-ral rea
hing-de�nitions as 
omputed by the pointer analyzer. We mark everystatement en
ountered in this tree traversal, 
utting traversal short when weattempt to move to a statement before the stit
h point in the 
ontext-sensitivestatement list of the program (statement l in Figure 6.4).On
e the set of statements in the sli
e is 
omputed, we 
an identify theset of values that need to be transferred to the TwoStep prefet
h 
ontrollerat the stit
h point. We perform a ba
kward interpro
edural traversal, addingvalues on the right-hand side of statements in the sli
e as we en
ounter them,and removing values on the left-hand side. When a pro
edure 
all is en
oun-tered, we rename formal parameters with 
all arguments and pro
eed. Thistraversal 
ontains a parsimonious list of the variables that need to be seededinto TwoStep's registers from those of the main pro
essor before starting theprefet
h kernel for the 
urrent sli
e.Density 
he
k: Having 
omputed the sli
e, we must now 
he
k that itprunes enough 
omputation to allow the prefet
h thread to run ahead of themain program. Our density metri
 is the fra
tion of the statement volumebetween prefet
h point and stit
h point that is part of the sli
e.SVloop = Itersloop � Sli
edStati
Stmtsloop (6.3)SV
luster =XSVloop (6.4)115



void leaf (A* a) {a->val = X ;}void setList (A* list) {int 
ounter = 0 ;while (list) {++
ounter ;leaf (list) ;list = list->next ;}doSomething (
ounter) ;}
loop:if (!list) goto exit ;list->val = X ;list = list->next ;goto loop ;exit:

Figure 6.6: A simple C program and its 
ontext-sensitive interpro
edural ba
k-ward sli
e TVloop = Itersloop � Stati
Stmtsloop (6.5)TV
luster =XTVloop (6.6)Density
luster = SV
luster=TV
luster (6.7)In these equations, Sli
edStati
Stmtsloop is the number of simple state-ments in 3-address form in one iteration of the loop that belong to the sli
e,and Stati
Stmtsloop is the total number of su
h statements in this iteration.Sli
es with densities under a �xed threshold of 60% are retried with otherprefet
h or stit
h points as outlined above. Our empiri
al reasons for sele
tingthis threshold are des
ribed in Se
tion 6.5.
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Summary: We have des
ribed the implementation of the TwoStep 
ompilerin detail. TwoStep transforms an appli
ation augmented with loop iteration
ount pro�les into prefet
h kernels in the TwoStep ISA for the important loop
lusters. Parts of this work
ow are 
ommon with other sli
ing and pre
om-putation studies, while parts are ne
essitated by the novel TwoStep mi
roar-
hite
ture. In the rest of this 
hapter, we des
ribe a preliminary evaluation ofour 
ompiler 
omparing sli
es generated automati
ally with those generatedby hand. We then dis
uss in greater depth the e�e
t of a pull-based prefet
h-ing mi
roar
hite
ture on the 
ompiler and how it di�ers from prior algorithmsfor automati
 pre
omputation.6.5 Evaluating the sli
es generated by the 
ompilerThis se
tion evaluates ea
h of the major poli
ies in our 
ompiler, andwe demonstrate that these poli
ies adequately 
over the state spa
e for ourappli
ations. We 
over in order: loop 
lustering, densities for di�erent 
luster
on�gurations (the ba
ktra
king loop in Figure 6.1 b), and �nally the e�e
t ofprefet
h point sele
tion on density (loop of Figure 6.1 
). We then summarizethe vital statisti
s of the prefet
h kernels sele
ted for ea
h of our appli
ations.Loop 
lustering: Clustering bounds the state spa
e for sear
hing for usefulprefet
h kernels in later passes. Table 6.1 summarizes the usual size of thisstate spa
e, measured as the distribution of loops of di�erent nesting-depths inour appli
ations. These loop nests all 
ontain innermost loops in the top 90%117



#Loops ofnest depth:Appli
ation 1 2 3 4175.vpr 8 14 0 0179.art 0 6 2 1181.m
f 0 1 1 1183.equake 0 0 3 0188.ammp 3 4 5 1256.bzip2 4 3 2 3300.twolf 7 8 0 0sphinx 3 6 0 0Table 6.1: Size of the 
lustering state spa
eof loop volume for the appli
ation. Loop nest 
andidates within an appli
ationoften have overlapping outer loops; the total loop volume for these nests oftenex
eeds 100%.Choosing loop 
lusters: Sin
e a prefet
h kernel for one loop eliminatesoverlapping kernels in any 
ontaining loops, the goal is to maximize the loopvolume that is 
overed by kernels without drawing too mu
h 
omputationinto the kernel. The density threshold is a 
ru
ial parameter in the designof the TwoStep 
ompiler, and a�e
ts the ability of the 
ompiler to handledeeply-nested loops. In pi
king a good density threshold, we are guided bythe densities of the most deeply nested loops in our appli
ations, some of whi
hare shown in Table 6.2. In this �gure, we assume prefet
h point sele
tion asdes
ribed in Se
tion 6.4 and study the e�e
t of loop nest depth on densityand on per-prefet
h sli
e 
y
le-time redu
tion. For ea
h loop 
luster, we su
-118



Innermost Nesting # stmts Sli
e density Cy
le-timeloop fun
tion redu
tion179.arttrain mat
h 4 290 86% -2.5%3 288 44% 0.1%2 224 4% 0.0%1 120 3% 0.0%train mat
h 2 224 5% 0.5%1 120 3% 0.0%181.m
frefresh potential 2 27 48% 7.9%1 22 18% 4.7%primal bea mpp 3 487 71% 0.5%2 137 42% 4.2%1 88 21% 4.0%183.equakesmvp 3 358 10% 3%2 156 4.5% 0.8%1 155 2.5% 0.8%188.ammpmm fv update nonbon 4 993 26% 0.5%3 681 26% 0.2%2 121 9% 0.2%1 28 30% 0.0%eval 3 27234 53% -16%2 27178 0% 0.0%1 27152 0% 0.0%Table 6.2: Sli
e densities for the di�erent 
on�gurations of the most interesting
lusters
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while (1) {a = PICK_INT(1 , num
ells);a
ellptr = 
array[a℄; (1)atileptr = a
ellptr->tileptr ; (2)atermptr = atileptr->termsptr ; (3)for(t=atermptr; t; t=t->nextterm) { (4)ttermptr = t->termptr ; (5)...}...}Figure 6.7: Loops with lots of dependent instru
tions have a small number ofpossible densities (300.twolf).
essively strip the outermost loop, showing the density of the resulting sli
eand the speedup resulting from applying just this sli
e. Using this data, weex
lude 
lusters that generate sli
es with a density greater than 60%. The60% threshold is aggressive and permissive; it avoids ever dropping a favor-able 
on�guration. While it does retain some dubious 
lusters with extremelylarge sli
es that might simply add overhead at runtime, in pra
ti
e we �nd thatthese 
andidates are eliminated by the 
ompiler anyway be
ause they make alibrary 
all the 
ompiler 
annot generate 
ode for.Prefet
h-point sele
tion: Having 
hara
terized the loop nest sizes andthe spa
e of 
lustering de
isions, we now turn to the e�e
t of prefet
h-pointsele
tion on sele
ted 
lusters. The majority of loop 
lusters have 1-4 prefet
hpoint 
andidates with widely varying densities, and de
iding about them iseasy. We �nd that the loops with hundreds of prefet
h point 
andidates break120



Cluster Nesting DV Prefet
h points Common densities175.vpr I 2 31.2% 18 7.72%175.vpr II 2 20.1% 47 10%, 23%, 34%175.vpr II 1 3.2% 136 2.7%, 13.9%179.art I 4 32.1% 7 100%179.art II 2 19.7% 9 5%, 18.2%179.art III 1 2.0% 19 9.5%, 23.8%181.m
f I 2 51.3% 54 75.1%181.m
f II 1 51.3% 52 72.3%181.m
f III 1 16.4% 12 25%, 16.7%, 8.33%183.equake I 3 67.7% 200 1.18%, 2.11%, 9.8%, 82.7%183.equake II 2 62.7% 200 4.8%, 5.6%, 48.8%188.ammp I 2 51.2% 32 0.2%, 0.1%188.ammp II 1 45.6% 3 61.5%188.ammp III 1 11.4% 3 1.25%256.bzip2 I 1 31.9% 17 34.4%, 43.8%300.twolf I 2 26.6% 7 8.3%, 9.2%, 32.4%, 93.5%300.twolf II 2 16.8% 20 0.8%, 2.8%, 6.9%, 40.3%300.twolf III 1 4.1% 30 0.6%, 2.9%sphinx I 3 83.5% 472 83.5%, 48.3%sphinx II 1 35.2% 10 5.8%, 76.1%sphinx III 1 5.1% 6 35.7%Table 6.3: Size of the prefet
h-point sele
tion state-spa
e, with 
ommon densi-ties for di�erent prefet
h-points. DV stands for dereferen
e volume as de�nedin Se
tion 6.2
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down into a small number of nested equivalen
e 
lasses be
ause of the presen
eof low-ILP dependen
e 
hains. The presen
e of a loop-
arried dependen
eensures that in
luding one of the dereferen
es in an equivalen
e 
lass resultsin all the others being in
luded. Figure 6.7 illustrates this pattern. Sele
tingany of the dereferen
es in statements 1{3 as the prefet
h point will in
ludeall 3 statements in the ba
kward sli
e. Density will thus remain the same.Sele
ting 4 or 5 would add both. Thus, there are only two legal densities inthis loop nest, assuming no dereferen
es (ie. only 
omputation) in the elidedportions.Table 6.3 enumerates some of the major loop 
lusters that test prefet
h-point sele
tion and the number of available prefet
h point 
andidates | state-ments in the innermost loop of the 
luster that 
ontain pointer dereferen
es |for ea
h. It also shows the most 
ommon densities for these loop 
lusters. Inall but one of our appli
ations, the largest possible density bounds the 
riti
alpath to the last load as opposed to the 
omputation performed using the loadsin a loop 
luster. On
e again, our simple density threshold su

essfully pi
ksa good prefet
h point for all sli
es, while relying on overly large sli
es to bepruned during 
ode-generation.The notable ex
eption to this pattern is 183.equake, where the presen
eof independent loads is 
ommon, 
ausing multiple parallel dependen
e 
hainsin a loop be
ause of its multi-dimensional array data stru
tures. Figure 6.8illustrates this. Modifying the 
ompiler to sli
e for multiple prefet
h pointsper 
luster allows us to explore the spa
e of all possible 
ombinations, but122



for (i = 0; i < nodes; i++) {next = Aindex[i℄;sum0 = A[next℄[0℄[0℄*v[i℄[0℄ + A[next℄[0℄[1℄*v[i℄[1℄+ A[next℄[0℄[2℄*v[i℄[2℄;sum1 = A[next℄[1℄[0℄*v[i℄[0℄ + A[next℄[1℄[1℄*v[i℄[1℄+ A[next℄[1℄[2℄*v[i℄[2℄;sum2 = A[next℄[2℄[0℄*v[i℄[0℄ + A[next℄[2℄[1℄*v[i℄[1℄+ A[next℄[2℄[2℄*v[i℄[2℄;...}Figure 6.8: 183.equake 
onsists mostly of loops with multiple dependen
e
hains.on
e again we are either left with good density sli
es that fail to prefet
h allimportant loads, or high density sli
es that are unable to run suÆ
iently farahead of the prefet
h thread. We prune the latter 
andidates from further
onsideration. A prefet
h engine that 
an prefet
h for multiple iterations inparallel | and so utilize all available prefet
h bandwidth for independentiterations | may be able to 
onsider su
h sli
es more aggressively.Compiler ba
k-end and prefet
h kernel 
hara
teristi
s: Clusters andsli
es that �t the 
riteria of previous phases are now ready for 
ode generation.Table 6.4 summarizes some 
hara
teristi
s of the resultant prefet
h kernels inthe TwoStep ISA for our appli
ations | the number of individual kernels forea
h appli
ation, their total stati
 size in instru
tions, and the number of regis-ters utilized. We also present 
orresponding data from the manually-generatedprefet
h kernels of the previous 
hapter. As 
an be seen, the automati
allygenerated kernels are less parsimonious than the hand-
rafted versions along123



Appli
ation Kernels Stati
 size # RegistersC H C H C R H175.vpr 5 - 100 - 77 12 -179.art 2 1 40 29 26 14 9181.m
f 3 3 221 50 139 32 14183.equake 1 - 29 - 30 12 -188.ammp 4 - 514 - 355 48 -256.bzip2 2 - 120 - 87 12 -300.twolf 9 1 305 33 271 31 20sphinx 9 2 935 99 671 31 16Table 6.4: Vital statisti
s for the sli
es generated by our 
ompiler (C), and
omparisons with the hand-
rafted sli
es from Chapter 5 (H).ea
h of these dimensions:� The number of kernels goes up partly be
ause the 
ompiler is not smartenough to merge sibling 
lusters, and in a few 
ases be
ause it generateskernels not 
overed in the hand-
rafted 
ase.� The sizes of the prefet
h kernels goes up be
ause the 
ompiler performsno peephole optimizations, resulting in redundant COPY and JUMPoperations. We perform JUMP 
haining to eliminate empty basi
 blo
ksin the prefet
h program. However, we do not eliminate JUMPs to thenext PC. We found that these peephole optimizations had no e�e
t onprefet
hing e�e
tiveness or 
y
le 
ount; the bottlene
k in exe
uting oursli
es is memory and pull laten
y rather than the number of instru
tionsexe
uted in the L2.� The TwoStep 
ompiler 
urrently performs no register allo
ation, always124




reating a new name rather than re
y
ling free ones. The 
olumn Rin Table 6.4 shows the true register requirements for our appli
ationsafter straighforward manual register allo
ation. With the ex
eption ofone sli
e in 188.ammp, all our appli
ations require 32 registers or fewer,even though the 
ompiler remains oblivious to any register-
apa
ity 
on-straints at this time. In produ
tion it will need to be enhan
ed to o

a-sionally spill.Stit
h 
ode in the main program: On
e the prefet
h kernels are gener-ated, the 
ompiler must augment the main program for two reasons: insertingstit
h 
ode to trigger di�erent prefet
h kernels at stit
h points, and insertingpulls at the start of loop iterations being prefet
hed for. Compared to manualkernels the overhead due to stit
h instrumentation in
reases for two reasons:the in
reased fragmentation into prefet
h kernels we alluded to above in
reases,and a 
onservative algorithm in the 
ompiler that o

asionally stit
hes vari-ables that are never used by the prefet
h program. These redundant variablesalso 
ause some in
rease in the register footprint of our prefet
h kernels. Theyarise be
ause our implementation maintains pointer-aware rea
hing de�nitionsby statement rather than symboli
 lo
ation in order to 
onserve 
ompile-timespa
e.
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6.6 Dis
ussion: TwoStep vs prior pre
omputation 
om-pilersAs detailed in Chapter 2, pre
omputation-based prefet
hing has beenstudied in several instan
es of prior work [54, 76, 77℄. Most su
h studies haveeither 
omputed sli
es in hardware or pursued post-
ompilation binary trans-lation. Computing sli
es in hardware restri
ts the s
ope of individual sli
es,while binary translation dete
ts only simple pointer-
hasing patterns. Boththese approa
hes are less e�e
tive at addressing the more 
omplex interleav-ings of spatial and pointer a

ess that we demonstrated in Chapter 3. Thestate of the art in thorough 
ompiler-based pre
omputation is the work of Kimand Yeung [47℄. We fo
us on this study in our 
omparison.Kim and Yeung's 
ompiler uses 2 kinds of pro�le information | loopiteration 
ount pro�les and 
a
he miss pro�les | to sele
t 
ompute pre
ompu-tation sli
es for exe
ution in spare hardware 
ontexts of a simultaneous multi-threading (SMT) pro
essor. The 
ompiler 
onsists of three major phases: sli
egeneration, prefet
h 
onversion, and threading s
heme sele
tion. Sli
e genera-tion 
onsists of sele
ting stores to start the sli
e at using the 
a
he miss pro�le,
omputing a sli
e ba
k 2 loop nests. On
e the sli
e is 
omputed, prefet
h 
on-version 
onsists of removing stores and repla
ing loads with non-blo
king vari-ants. Finally, threading s
heme sele
tion 
onsiders two alternatives to simpleserial preexe
ution | doall whi
h spe
ulatively updates the indu
tive variablefor ea
h iteration and runs later iterations spe
ulatively in additional SMTthreads; and doa
ross whi
h performs a more detailed analysis of loop-
arried126



dependen
es to de
ompose loop iterations into a `ba
kbone' and `ribs', so thatribs may be exe
uted in parallel.This s
heme | whi
h we refer to as the SMT 
ompiler | has mu
hin 
ommon with our TwoStep 
ompiler: a dependen
e on loop iteration 
ountpro�les, pointer analysis and sli
ing; the 
ru
ial de
ision of what to prefet
h orwhat load to start ba
kward sli
es at; sandboxing prefet
h threads from mak-ing ar
hite
turally-visible 
hanges. There are also several points of di�eren
ein approa
h:1. The SMT and TwoStep 
ompilers live in very di�erent 
ontexts in termsof hardware budget. The SMT 
ompiler assumes a full pro
essor ISAfor prefet
h threads with potentially multiple threads in 
ight. TwoStep
onsists of a simple 
ontroller that is little more than a state ma
hine,leaving pro
essor resour
es for other uses, and also simplifying our 
odegeneration.2. Using a prefet
h 
ontroller at the L2 is also more parsimonious than pro-
essor threads in terms of 
a
he bandwidth. Sin
e our prefet
h 
ontrollersits at the L2 we only pay half the round-trip laten
y and bandwidthfor ea
h memory a

ess. The redu
ed laten
y is espe
ially important forsequential pointer-
hasing.3. The SMT 
ompiler uses a simpler stit
h-point sele
tion 
riteria than wedo | to simply stop two loop nests above the prefet
h point. We explore127



more aggressive possibilities and use the post-sli
ing density metri
 de-s
ribed above to ba
ktra
k and prune outer loops. Our more aggressiveiterative solution shows 9% speedup for twolf as 
ompared to the 2%they show, a di�eren
e whi
h is signi�
ant given the extra hardware andmultiple parallel prefet
h threads of the SMT 
ompiler.4. Our pull instru
tions have about the same overhead as the semaphores intheir implementation; however pulls are superior in two ways. First, thesemaphores of the SMT 
ompiler �x the appli
ation to a �xed numberof iterations, where a FIFO-based approa
h measures the amount ofpotential pollution more pre
isely allowing us to be more aggressive insome 
ases. Se
ond, using a FIFO de
ouples prefet
h distan
e frompollution. Tighter loops 
an thus bene�t from a larger FIFO and prefet
hdistan
e without risking pollution in the DL1.5. The SMT 
ompiler relies on 
a
he-miss pro�les generated using 
a
hesimulation. We use simple stati
 models instead and rely for 
orre
tionon ba
ktra
king in later phases. As a result, we are able to generatepro�les using native rather than simulated exe
ution. The time takenfor 
a
he simulation is proportional to the size of the dynami
 exe
utionof interest; the extra time taken by ba
ktra
king depends on appli
ation
omplexity. For appli
ations in the SPEC suite, the two are 
omparable.6. Having multiple prefet
h threads in 
ight addresses a 
on
ern for TwoStep| sequential prefet
h threads fail to use all available prefet
h bandwidth.128



This 
an be
ome important in tight loops. As we show in Chapter 7,
ombining a pre
omputation-based s
heme with a history-based s
hemere
overs a lot of the bene�t in a simpler and more modular manner.These di�eren
es are largely a result of the di�erent hardware 
ontexts of ourrespe
tive studies. Given multiple parallel 
ontexts, Kim and Yeung fo
us onways to maximize their use, while TwoStep's design was driven by the desire tominimize the laten
y of pointer 
hasing. This laten
y is 
ru
ial in the patternsof serialized prefet
hing 
ombining 
omplex sequen
es of pointer-
hasing andspatial o�sets in some appli
ations that we observed using DTra
k. We nowevaluate sli
es of the TwoStep 
ompiler using several stati
 metri
s, deferringthe more 
omprehensive evaluation of the tool
hain to the next 
hapter.6.7 SummaryThis 
on
ludes our des
ription of the TwoStep 
ompiler. Our detailedsurveys of the state spa
e that the 
ompiler must sear
h serve to validate itsdensity-based poli
ies. We have shown that the state spa
e, suitable de
om-posed, is not overly large and that a relatively simple 
ompiler organizationserves to �nd all opportunities in the form of favorable prefet
h sli
es. The de-tailed analysis also un
overs the limitation of pre
omputation-based prefet
h-ing responsible for 179.art's la
k of speedup: that 
ertain kinds of loops withlots of dereferen
es per iteration organized in multiple dependen
e 
hains needa favorable 
ompute-store ratio to be e�e
tively prefet
hed. The `tighter' the129



loop in terms of 
omputation, the harder it is to e�e
tively prefet
h all of thedi�erent loads in the loop. Aside from this limitation, however, our 
ompilersu

essfully handles a wide variety of appli
ations and su

essfully 
onvergeson the right 
lustering and sli
ing de
isions to 
ompare very favorably withmanually-generated kernels. While our manual versions have fewer stati
 ker-nels, often 
ombining multiple kernels where the 
ompiler 
annot, and unifyingloops with identi
al a

ess patterns, the 
ompiler is able to obtain nearly allthe speedup obtained manually.The 
ompiler performs whole-program analysis based on detailed pointerinformation. The more heavyweight analysis requires multiple 
ontext-sensitivetraversals of an appli
ation's sour
e 
ode, one for ea
h 
andidate sli
e pro
essedduring density measurement and 
ode-generation. Compiling our largest 
ode-bases | sphinx | 
urrently takes over 2 hours. Re
ent advan
es in adaptiveon-demand 
ontext-sensitivity [95℄ 
ould be used to optimize these traversals.In the rest of this dissertation, we fo
us on evaluating the resulting kernels,and on identifying the strengths and weaknesses of TwoStep.
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Chapter 7Evaluating TwoStep
Having des
ribed the TwoStep mi
roar
hite
ture and 
ompiler we nowperform a detailed evaluation and 
hara
terization of TwoStep for our ap-pli
ations. Our results are broadly divided into two 
ategories: 
omparisonstudies to measure the bene�t of TwoStep relative to di�erent approa
hes, andstate-spa
e explorations to better understand the strengths and weaknesses ofTwoStep. In these results, we prune from 
onsideration 4 appli
ations with lowmemory usage that TwoStep fails to improve: 165.gzip, 177.mesa, 186.
rafty,and 176.g

. We were unable to 
ompile 176.g

 and 197.parser be
ause theTwoStep 
ompiler runs out of memory.We begin by measuring the 
overage and a

ura
y of TwoStep prefet
h-ing for our appli
ations using the methodology detailed in Se
tion 3.3, showingthat TwoStep su

essfully prefet
hes for a broad spe
trum of a

ess patterns.We then measure how this e�e
tiveness with a

ess patterns translates to ag-gregate speedups, 
omparing overall 
y
le-
ount redu
tions due to TwoStepwith two prior prefet
hing approa
hes. Our results show that TwoStep'sstrengths are 
omplementary to prior approa
hes; it espe
ially performs wellon extremely irregular appli
ations su
h as sphinx, 188.ammp and 300.twolf131



that other te
hniques are unsuited to.The next three se
tions delve into the reasons for these di�ering strengths.In brief, an appli
ationmay be better suited to forward-looking pre
omputation-based prefet
hing or ba
kward-looking history-based prefet
hing. History-basedprefet
hing relies on �nding patterns (usually spatial) in the dynami
 addressstream of an appli
ation. It is better suited to appli
ations with spatial lo-
ality. Pre
omputation, on the other hand, 
an handle more 
omplex a

esspatterns where the address stream does not have a reliable pattern; how-ever it requires a lot more sequential 
haining between prefet
hes to generatea

urate prefet
hes. As a result, it requires more 
omputation per loop iter-ation to reliably provide improvements. We demonstrate this di
hotomy �rstwith a mi
roben
hmark study, then with a more detailed 
hara
terization ofprefet
hing in real-world appli
ations to explore the relative strengths of regionprefet
hing and TwoStep.The �nal se
tions assess the relative importan
e of three importantparameters of our system: DRAM laten
y, the 
apa
ity of TwoStep's FIFO,and the laten
y of pulls in transferring 
a
he-lines from FIFO to DL1. Theseresults support our 
hoi
e of baseline and show that implementing TwoStep isa realisti
 proposition on 
urrent and future hardware.7.1 The e�e
tiveness of TwoStep prefet
hingA prefet
h te
hnique is traditionally evaluated along two dimensions:by its a

ura
y, and by its 
overage. TwoStep's a

ura
y is 
onsistently high.132
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Figure 7.1: The a

ura
y of TwoStep prefet
hing for our appli
ations.We measure a

ura
y as the fra
tion of 
a
he-lines prefet
hed into the DL1that were used before evi
tion. Figure 7.1 shows that this fra
tion is uniformlyhigh a
ross all our appli
ations; 179.art exhibits the worst a

ura
y of 87%.As a result of the high a

ura
y, TwoStep prefet
hing rarely in
reases anappli
ation's bandwidth requirements to main memory. Indeed, as Figure 7.2shows, it sometimes redu
es 
a
he misses at the DL1 or the L2 as a

urateprefet
hes improve temporal lo
ality in the 
a
hes. We now des
ribe this �gurein more detail as we fo
us on the 
overage of TwoStep.Evaluating 
overage: Figure 7.2 shows the misses remaining in the DL1and the L2 after TwoStep prefet
hing relative to a baseline with no prefet
h-ing. Redu
tions in DL1 misses are due to useful pulls, and we return to thesein more detail in the Se
tion 7.6. We separate misses in the L2 to 3 separate
ategories: misses that were ex
lusively due to prefet
hes (i.e. miss laten
y133
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Figure 7.2: Aggregate misses remaining after TwoStep prefet
hing. This met-ri
 underestimates the improvement due to TwoStep.was either entirely overlapped, or the prefet
h was useless), misses that wereinitiated by prefet
hes but subsequently also by demand fet
hes (i.e. miss la-ten
y was partially overlapped by prefet
hing), and misses that were initiatedex
lusively by demand fet
hes (i.e. no laten
y was overlapped by prefet
h-ing). Figure 7.2 shows that while prefet
hes initiated by TwoStep are mostlya

urate, di�erent appli
ations are able to leverage su
h prefet
hes to vary-ing degrees. In 181.m
f, for example, TwoStep redu
es total L2 misses by 17%and su

essfully overlaps all the laten
y of nearly half the remaining misses. In256.bzip2, however, the 
ompiler is unable to generate any prefet
h programswith good densities, and so TwoStep provides no bene�t.Figure 7.2 exposes two disadvantages of using misses or miss-rate as ametri
 for measuring L2 
overage. First, the redu
tion in aggregate DL1 andL2 misses often underestimates speedups as we show later. Se
ond, the ratioof demand misses to prefet
h misses also serves as a poor indi
ator of speedups134
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Figure 7.3: Stall 
y
les remaining after TwoStep prefet
hing for the mostfrequently missing data stru
tures (DS1 and DS2 and DS3).due to prefet
hing. Demand fet
hes and prefet
hes are often overlapped bythe memory system in 3 appli
ations: 188.ammp, 300.twolf, and sphinx.These drawba
ks have a single basi
 
ause: pure miss 
ounts are oftenpoorly 
orrelated with performan
e in modern systems be
ause of the 
om-plexity of queueing and s
heduling de
isions between multiple misses in thememory hierar
hy. Instead, our metri
 of 
hoi
e is more immediate: timespent stalling due to memory laten
y. As des
ribed in Se
tion 3.7, we tra
k
y
les that the pipeline 
ommits no instru
tions, assigning blame to the datastru
ture of the load at the head of the reorder bu�er.Figure 7.3 breaks down the e�e
t of TwoStep prefet
hing on stall 
y-
les for 3 major data stru
tures in our appli
ations. TwoStep 
onsistentlyredu
es stall 
y
les a
ross a wide variety of ben
hmarks and a

ess patterns.The greatest redu
tions o

ur in memory intensive appli
ations with irregular135
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Figure 7.4: Comparing prefet
h te
hniquesa

ess patterns | 181.m
f, 300.twolf and sphinx. Lower-magnitude redu
tions
an be seen for 183.equake (regular but memory-intensive) and 188.ammp (ir-regular but with lower 
a
he miss-rates). The 
ombination of the redu
tionsin stall 
y
les and the fra
tion of useful prefet
hes shows that TwoStep is su
-
essful in its 
ore design goal: prefet
hing a wide variety of a

ess patterns. Italso serves to highlight the appli
ations where we do better than others. Weexplore this question further in the next se
tion.7.2 Comparing prior approa
hesAs des
ribed in Chapter 5, Figure 7.4 shows the aggregate speedups ofTwoStep for our appli
ations relative to a baseline with no prefet
hing. We also
ompare TwoStep with one short-range and two prior long-range prefet
hingte
hniques | Tagged Prefet
hing, S
heduled Region Prefet
hing (SRP) [55℄and Guided Region Prefet
hing (GRP) [98℄, respe
tively. Tagged prefet
h is136



an example of a 
ommon 
ategory of simple hardware prefet
hing in
luded inmany produ
tion mi
ropro
essors. It prefet
hes the next 
a
he-line on an L2
a
he miss, marks 
a
he-lines so prefet
hes using an extra bit, and 
ontinuesto prefet
h 
a
he-lines and set their bits on the �rst use of a prefet
hed 
a
he-line. This approa
h allows limited lookahead and 
on
omitant improvementfor simple spatial patterns, but fails to improve less regular appli
ations. Ourresults 
on�rm this.SRP uses the L2 prefet
h 
ontroller to trigger spatial prefet
hes inan aligned 4KB region on en
ountering L2 misses, taking 
are to prioritizedemand fet
hes and prefet
hes of di�erent regions and bounding the pollutionin the L2 due to useless regions when the appli
ation has no spatial lo
ality.GRP is a des
endant of SRP that performs aggressive 
ompiler analysis toaugment important loads in the appli
ation with prefet
h hints. The prefet
h
ontroller in GRP also performs 
ontent-based pointer prefet
hing that allowsit to run ahead of the appli
ation by a stati
ally bounded number of iterations.In spite of its support for various kinds of pointer-based prefet
hing, GRP'sresults are similar to those of SRP, getting most bene�t from spatial a

esspatterns but with greatly improved prefet
h a

ura
y and greatly redu
edmemory traÆ
 relative to SRP. All three sets of results use a 
ommon Rambusmodel. However, GRP uses di�erent 
ompiler and simulator infrastru
ture andis therefore measured against its own baseline.TwoStep outperforms GRP and SRP on the 4 most irregular appli
a-tions: 300.twolf, sphinx, 175.vpr and 188.ammp. Speedups are bounded by the137



memory intensiveness of the appli
ation; 175.vpr and 188.ammp have fairly lowmiss-rates. Another memory-intensive appli
ation with irregular a

ess pat-terns is 181.m
f, and TwoStep provides signi�
ant speedups that are nearlyidenti
al to the prior te
hniques. However, SRP and GRP improve 181.m
fonly due to a

idental spatial lo
ality in its layout; allo
ation and a

ess followthe same path through the data stru
ture. We believe the use of 181.m
f's sim-plex algorithm in a more general graph-optimization appli
ation with multiplepossible paths of a

ess would not attain this level of spatial lo
ality, makingTwoStep more e�e
tive in 
omparison.Figure 7.4 also highlights the areas where TwoStep is not as e�e
tiveas prior approa
hes. 179.art and 183.equake are regular appli
ations that SRPand GRP are able to signi�
antly speed up. TwoStep also shows speedups forthem, but the speedups are not as signi�
ant. This la
k of improvement arisesbe
ause the pre
omputation approa
h for
es TwoStep to serialize prefet
heswhere approa
hes tuned for just spatial lo
ality 
an issue multiple prefet
hesin parallel taking advantage of all available prefet
h bandwidth. The e�e
t ofthis parallel bandwidth depends on the relative quantities of 
omputation permemory a

ess in an appli
ation; thus the di�eren
e is widest for 179.art whi
hspends nearly 90% of its time in extremely tight loops with 2-6 instru
tionsof 
omputation per memory a

ess. 183.equake has more 
omputation permemory a

ess, 
on
omitantly improving the e�e
tiveness of TwoStep. Wenow support this reasoning in a mi
roben
hmark study.
138




lass Obje
t: // Size: one 
a
he-lineObje
t* next[4℄int x[4℄ // PaddingObje
t f[OBJECTS℄ // Size: 10x L2 
apa
ity// Ea
h element's next pointers// initialized randomly.Obje
t* 
urrObj = fAr
hetype (regularity, 
omputation):do 100-regularity times:do 
omputation times:sum = (sum + 
urrObj->value)%8
urrObj = 
urrObj->next[i%4℄do regularity times:do 
omputation times:sum = (sum + 
urrObj->value)%8++
urrObjFigure 7.5: The Ar
hetype mi
roben
hmark for exploring the appli
ation 
ov-erage of di�erent prefet
h s
hemes7.3 Mi
roben
hmark study: The spa
e of appli
ationbehaviorThis se
tion presents our 
overage study to show that TwoStep is morebroadly-appli
able than prior approa
hes. We des
ribe a simple mi
roben
h-mark that allows us to tune two signi�
ant appli
ation features - the 
omputevs memory-a

ess ratio (
omputation) and the fra
tion of regular vs irregu-lar and hard-to-predi
t memory a

esses in the dynami
 address stream seenby the memory hierar
hy (regularity). We design our mi
roben
hmark to139
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Figure 7.6: The 
overage of GRP by iterations of 
omputation per obje
ta

essed, and by regularity (both variables from Figure 7.5). GRP is biasedtowards the regular side of the spa
e.exaggerate the 
ontrast between extremely regular and extremely irregular a
-
ess. Figure 7.5 shows the basi
 stru
ture of our Ar
hetype mi
roben
hmark.Ar
hetype 
onsists of a large array of obje
ts an order of magnitude largerthan L2 
apa
ity and a series of traversals over it of variable regularity. Toeliminate intra-obje
t misses, ea
h obje
t in the array is aligned and sizedto �t exa
tly in an L1/L2 
a
he-line. Ea
h obje
t 
ontains pointers that areinitialized to point to four other obje
ts in the array 
hosen at random. Ea
hiteration/
all to Ar
hetype now traverses the array in a 
ombination of �rst
ompletely irregular pointer-based a

ess and then 
ompletely regular stride-1a

ess with good spatial lo
ality. Rather than try to enumerate the spa
e ofpossible a

ess patterns and obje
t sizes we sele
t these two types of a

esswith extreme 
a
he behavior and study the e�e
t of their relative weight ondi�erent types of prefet
hing.Given the Ar
hetype mi
roben
hmark we 
an now explore the speedups140



yielded by di�erent prefet
h s
hemes for di�erent values of regularity and
omputation. These speedups may be summarized in the form illustrated inFigure 7.6. This graph shows speedups for 5 groups of bars 
orresponding todi�erent values of regularity on the x-axis, so that the set of bars at 100have perfe
tly spatial a

ess patterns while those at 0 have no spatial a

ess.Within ea
h group of bars we vary 
omputation, the amount of 
omputationper memory a

ess.Figure 7.6 exhibits several distin
t regions. First, areas with low valuesof 
omputation per obje
t (left-most bars in ea
h group) present little oppor-tunity for overlapping laten
y and GRP (not unlike other prior s
hemes) failsto provide speedup. Se
ond, as we in
rease 
omputation to extremely highlevels (right-most bars in ea
h group), Ar
hetype enters the spa
e of 
ompute-bound appli
ations. Again, speedup due to prefet
hing is limited in this 
ase.Between these two extremes lie the range of values for 
omputation whereprefet
hing 
an potentially provide speedups. SRP and GRP only improvethe regular side of this spa
e, gradually de
reasing speedups as Ar
hetype a
-
esses memory more irregularly in the groups on the left. This result is inagreement with �ndings of the original study; limitations in prioritizing be-tween pointers and a hard limit on the sla
k available to the prefet
her are themajor bottlene
ks in improving irregular appli
ations. The major improve-ment of GRP over SRP is redu
ed memory traÆ
 due to 
ompiler hints thatsuppress useless region prefet
hes.Unlike SRP and GRP, TwoStep (Figure 7.7) improves both the regular141
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Figure 7.7: The 
overage of TwoStep by iterations of 
omputation per obje
ta

essed, and by regularity (both variables from Figure 7.5). Both regularand irregular appli
ations now bene�t from prefet
hing.and irregular sides of the spa
e, so that ea
h group of bars shows signi�
antspeedups for some level of 
omputation. There are two important se
ondarye�e
ts. First, the serialization of pre
omputation 
auses TwoStep to needmore 
omputation per memory-a

ess to show speedups. We disabled our
ompiler's density 
he
ks to for
e it to prefet
h at all levels of 
omputation,and this 
auses signi�
ant slowdowns for tight loops. In pra
ti
e our 
ompilersimply ex
ludes su
h loops from TwoStep prefet
hing. Comparing the regularside of Figures 7.6 and 7.7 also shows this e�e
t { at 100% regular a

ess, GRPshows the most speedup at a lower level of 
omputation than TwoStep does.Se
ond, greater breadth in the appli
ation spa
e is o�set by degrada-tion at some individual points in the spa
e relative to SRP and GRP. As thespeedup distribution graphs show, SRP and GRP usually have 1-2 points inthe spa
e with substantially higher speedup than TwoStep 
an manage.
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Figure 7.8: Combining SRP with TwoStep gives the best of both worlds.Summary: In this se
tion, we presented a novel method to study the 
ov-erage of a prefet
h s
heme in the spa
e of appli
ations. Varying appli
ationbehavior rather than parameters of the system it runs on is a relatively under-studied te
hnique for highlighting the advantages and 
onstituen
ies of di�er-ent s
hemes. Our results show that TwoStep provides substantially greaterbreadth in the types of appli
ations it 
an improve, at the 
ost of redu
edspeedups in the portion of the spa
e that prior approa
hes have traditionallytargetted. They also highlight the 
omplementary strengths and weaknessesof history- and pre
omputation-based prefet
hing approa
hes: the former ex-ploits prefet
h bandwidth but requires address regularity; the latter exploits
omplex a

ess patterns but requires more 
omputation per memory a

ess.7.4 Combining history- and pre
omputation-based prefet
h-ingThe insight that history- and pre
omputation-based prefet
hing are
omplementary raises the possibility of 
ombining them to get the best ofboth worlds. To explore this possibility we enhan
e the L2 prefet
h 
ontroller143



to perform strided region prefet
hing when the TwoStep pre
omputation en-gine is disabled. Just like in SRP, region prefet
hes are s
heduled with lowerpriority than demand fet
hes or the more a

urate TwoStep prefet
hes, andare prefet
hed into the LRU way of the L2 
a
he without being pushed ontothe FIFO. Figure 7.8 summarizes our results, extending the 
omparison in Se
-tion 7.2 with a new bar for our 
ombined prefet
hing approa
h. As this Figureshows, 
ombining TwoStep with region prefet
hing gives us the best of bothworlds, providing the a

ura
y of pre
omputation-based prefet
hing in the ex-tremely irregular appli
ations that require it, and providing the bandwidthutilization of region prefet
hing in loops too dense for the TwoStep 
ompilerto pre
ompute for, and also in the rare 
ases of the prefet
h thread fallingbehind the main thread and giving up in regular appli
ations.Using region prefet
hing without the 
ompiler hints of GRP 
auses in-
reased bandwidth requirements just like SRP. In prin
iple it should be possi-ble to add GRP's 
ompiler analyses and hints to the TwoStep 
ompiler, thoughthey are 
urrently implemented in separate 
ompiler frameworks (S
ale and C-Breeze, respe
tively). Combining spatial prefet
h with TwoStep requires goodpollution 
ontrol and prioritization to manage low spatial prefet
h a

ura
y.This is 
on�rmed by experiments 
ombining tagged prefet
h with TwoStep,whi
h show signi�
ant 
on
i
t between the two approa
hes and no speedupsfor irregular appli
ations.Having 
ompleted our 
omparison and synthesis of pre
omputation-and history-based prefet
hing approa
hes, we now 
on
lude our evaluation144
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Figure 7.9: How TwoStep's speedups s
ale with growing memory laten
y.with a series of sensitivity studies to study the e�e
t of di�erent system pa-rameters on TwoStep's performan
e.7.5 E�e
t of main-memory laten
y on prefet
h e�e
-tivenessAn important question when studying speedups due to prefet
hing ishow these speedups 
hange as we in
rease laten
y to main memory. Figure 7.9answers this question. For ea
h appli
ation, the left-most bar shows the base-line RDRAM model used in the rest of this thesis, with RDRAM 
lo
ked ata 
y
le ratio of 4 relative to pro
essor frequen
y. We model in
reasing laten-
ies to main memory by 
hanging just this 
y
le ratio without adjusting therelative times spent by ea
h DRAM a

ess in its di�erent 
onstituent phases:pre
harge, a
tivation, the read/write itself, and queuing delay.Figure 7.9 shows that in
reasing main-memory laten
ies redu
es the145
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Figure 7.10: How GRP's speedups s
ale with growing memory laten
y.speedup due to prefet
hing very slightly. For example, 300.twolf's speedup goesfrom 9.0% to 8.0% over a fa
tor of 8 in
rease in RDRAM laten
y (average readlaten
y in
reases from 92.5 to 742 
y
les). Over the same spa
e IPC drops bya fa
tor of 4 from 0.66 to 0.15. This may seem implausible at �rst; as DRAMlaten
ies grow we would expe
t the pro
essor to be able to overlap less and lessof the large laten
y by prefet
hing. To explain why this is not the 
ase, we fo
uson the dependen
e stru
ture of our programs. As DRAM laten
y in
reases, itbe
omes the primary fa
tor de
iding IPC. Sin
e the dependen
e 
hains in anappli
ation are 
onstant as DRAM laten
ies grow, the number of instru
tionsthat 
an exe
ute overlapping with ea
h dynami
 DRAM a

ess will tend tostay 
onstant. Similarly, any prefet
hes issued will start at approximately thesame instru
tion. Sin
e main memory bandwidth is likely to be relativelyhighly utilized, the limited lookahead window in the out-of-order pro
essormeans that as we in
rease memory laten
y the ratio of RDRAM a

esses to146
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Figure 7.11: Sensitivity of TwoStep's speedups to FIFO 
apa
ity.instru
tions 
ommitted remains the same. As a result the speedup due toprefet
hing is also largely maintained.Figure 7.10 shows the 
orresponding �gure for GRP rather than TwoStep;on
e again in
reasing memory laten
y has only a slight e�e
t on prefet
hing ef-fe
tiveness. In the 
ase of 183.equake it even 
auses speedup to in
rease slightlyup to a 
y
le ratio of 16 before tapering o�. This is explained by the relativelyhigh fra
tion of unutilized memory bandwidth for 183.equake at our baselineDRAM laten
y. As a result, it requires DRAM laten
ies to grow by a fa
tor of4 before memory bandwidth is nearly fully utilized. At that point the sequen-tialization between memory a

esses ki
ks in as des
ribed above, and speedupsstay largely 
onstant past that point. Speedups due to pre
omputation-basedprefet
hing are more likely to have larger dropo�s with in
reasing memorylaten
y be
ause of the in
reased sequentialization of a

esses.
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Figure 7.12: Sensitivity of TwoStep's speedups to laten
y of the �rst 
a
he-lineon a pull. Subsequent 
a
he-lines arrive 1 
y
le apart. Further in
reases inlaten
y do not 
ause more dropo�; the rightmost bar for ea
h group measuresthe speedup due to prefet
hing to L2 rather than DL1.7.6 Sensitivity studiesThe TwoStep design has two major parameters - FIFO 
apa
ity andpull laten
y - that must be realisti
 in order for it to be feasible. We now eval-uate its sensitivity to these parameters. Figure 7.11 summarizes the speedupsobtained by TwoStep for our appli
ations and the sensitivity of these improve-ments to FIFO 
apa
ity. A 2KB (32-entry) FIFO suÆ
es to provide most ofthe bene�t of an in�nite-
apa
ity FIFO, indi
ating the e�e
tiveness of theFIFO at realisti
 
apa
ities for 
urrent te
hnologies [2℄.Figure 7.12 shows the e�e
t of pull laten
y on TwoStep's speedups. Wevary the laten
y of transfer of the �rst 
a
he-line from FIFO to DL1, assumingpipelining allows subsequent 
a
he-lines for ea
h pull to arrive 1 
y
le apart atthe DL1. We �nd that a
ross all our appli
ations a 4-
y
le pull laten
y gives148



us the same speedups as a 1-
y
le laten
y.In
reasing the laten
y to 16 
y
les or more 
auses demand fet
hes tohit in the L2 before the pull arrives in the DL1. The right-most bar in Fig-ure 7.12 is thus a good indi
ation of the relative bene�t of TwoStep prefet
hingto the L2 and DL1 for our appli
ations. Di�erent appli
ations bene�t fromprefet
hing to the DL1 to varying degrees, with memory-intensive appli
ationslike 181.m
f and 300.twolf getting most of their bene�t from a

urate prefet
hto the L2, while regular appli
ations like 179.art and 183.equake also bene�tsigni�
antly from the pulls to the DL1.7.7 SummaryThis 
hapter presented a detailed evaluation of the entire TwoStep mi-
roar
hite
ture and 
ompiler tool
hain des
ribed in the previous two 
hapters.We have shown that TwoStep prefet
hing provides 
y
le-time redu
tions a
rossall the appli
ations we evaluated on relative to a baseline with no prefet
h-ing. Analyzing the results further, we �nd uniformly substantial a

ura
ies,but wide varian
e in prefet
h 
overage, espe
ially for tight loops and regu-lar programs. While irregular appli
ations are uniformly improved relative toGRP, regular appli
ations often do signi�
antly better with prior approa
hes.We explore why and show that the need to serialize dependent prefet
hes isa disadvantage for TwoStep when running su
h appli
ations. More generally,pre
omputation- and history-based prefet
hing are 
omplementary approa
hesand we identify the pre
ise appli
ation 
hara
teristi
s that determine appli
a-149



tion aÆnity to one or the other.
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Chapter 8Con
lusions
Prefet
hing is an attra
tive solution to growing memory laten
ies. Un-fortunately, implementing prefet
hing well has been a 
hallenge for modernsystems resear
hers, largely be
ause of the wide variety of appli
ation behav-ior seen by modern 
omputer systems. Every prefet
hing system must makede
isions on what to prefet
h, when to prefet
h it, and where to prefet
h itto. It must make a high volume of these de
isions without adding too mu
hoverhead. In this study we have highlighted the subtleties in making thesede
isions and the many ways that a me
hanism that improves one de
ision forone set of appli
ations may degrade the quality of another de
ision for a di�er-ent set. One major su
h tension is between history- and pre
omputation-basedapproa
hes for de
iding what to prefet
h. Using past history utilizes prefet
hbandwidth more eÆ
iently and makes timing de
isions easier, but may yieldlow-a

ura
y prefet
hes for 
omplex irregular appli
ations. Using pre
omputa-tion guarantees a

urate prefet
hes, but serial dependen
es between prefet
hesworsen the problem of timing prefet
hes. In this dissertation we addressedthese intera
ting problems.
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8.1 Summary of 
ontributionsThe major theme in this dissertation has been that the 
haoti
 be-havior of large appli
ations is an artifa
t of insuÆ
ient analysis, and 
an bede
omposed into more regularly-behaved 
omponents. We began by de
om-posing the address streams of appli
ations by data stru
ture and phase, andby showing that this pro
ess 
an give insight into ea
h appli
ation's behaviorand yield a symboli
 a

ess pattern for the major loops in an appli
ation. Asappli
ations grow more 
omplex, general-purpose pro
essors must be in
reas-ingly proa
tive in adapting to their 
hanging needs over time. Data stru
turesand loops are ideal high-level stru
tures for designers to fo
us on in order togain insight.DTra
k, our tool for data stru
ture de
omposition, highlighted the widevariety of behaviors in modern appli
ations. Of the 8 appli
ations we studied,5 
ontribute 90% of their 
a
he misses in just three data stru
tures, while theother 3 
an take as many as 100 data stru
tures. While the phase transi-tions in our appli
ations o

ur at the same points a
ross all data stru
tures,the behavior of di�erent data stru
tures and phases is widely variable. Ourappli
ations bene�t from an appli
ation-spe
i�
 sampling period at whi
h toperform phase analysis. Combining phase and data stru
ture pro�les yieldsdistilled summaries of the dominant a

ess patterns in our appli
ations, andhighlights the �rst a

ess to an obje
t in a loop iteration as the most frequent
ause of 
a
he misses. Loop iteration footprints are tiny relative to 
a
he
apa
ities, allowing us to aggressively tune for these �rst obje
t a

esses.152



We then used our understanding of these major loops to understand thedrawba
ks of prior prefet
h approa
hes, and to design a prefet
h s
heme thataddresses these drawba
ks by or
hestrating 
a
he-lines into the level-1 data(DL1) 
a
he in units of a loop iteration. TwoStep leverages modern 
ompilerte
hniques to provide the memory hierar
hy with a distilled pi
ture of theappli
ation's a

ess patterns. Prefet
hes originate in the level-2 (L2) 
a
he tominimize address traÆ
 and laten
y between dependent prefet
hes. De
isionsof what to prefet
h next are de
oupled from when to prefet
h. A FIFO betweenL2 and DL1 provides both a low-overhead 
ow-
ontrol me
hanism that allowsthe rest of the system to largely ignore the possibility of pollution, and alsoprefet
hes data to the DL1 right before its use. We �nd these me
hanisms towork harmoniously together.The goal had been for this dissertation to provide a single set of me
h-anisms that are e�e
tive for the large variety of a

ess patterns seen in thewild. From that perspe
tive our results have been mixed. TwoStep workswell for programs with irregular a

ess patterns and reasonable levels of 
om-putation per memory a

ess. While these 
riteria seem reasonable, �ndingben
hmarks that �t them has been diÆ
ult, espe
ially when 
oupled withtool
hain-imposed 
onstraints | we require C sour
es and our 
ompiler over-heads pre
luded running 3 SPEC2000 ben
hmarks. While we su

essfullyimprove irregular programs over prior work, our improvements for regular ap-pli
ations are lower than 
ompeting approa
hes. Understanding why this isso is one of the 
ontributions of this dissertation: pre
omputation imposes153



an ordering on prefet
hes and so is unable to fully utilize available prefet
hbandwidth. Rather than a te
hnique that subsumes prior approa
hes, we haveended up with an understanding of the 
omplementary strengths of our ap-proa
h and prior te
hniques.Prefet
hing 
an either look ba
k at past history or look forward bypre
omputing an appli
ation's future requirements. We have quanti�ed the
omplementary advantages of these te
hniques into two appli
ation-level prop-erties. Appli
ations with a low 
ompute-a

ess ratio 
an bene�t from history-based prefet
hing if their a

ess pattern is not too irregular. Appli
ations withirregular a

ess patterns are likely to require pre
omputation-based prefet
h-ing, as long as their 
ompute-a

ess ratio is not too low. If the reader remem-bers one fa
t from this dissertation, we re
ommend this one.TwoStep is an elaborate system requiring pro�ling, whole-programanalysis, ISA modi�
ations and mi
roar
hite
tural 
hanges. Over the ben
h-marks we evaluated TwoStep over, the average improvement relative to priorapproa
hes like SRP is insuÆ
ient to justify in
luding the additional 
omplex-ity of TwoStep in a produ
tion design. However, I believe future trends willmake TwoStep more broadly appli
able. As 
omputers have be
ome 
heaperand more a

essible the trend in the last 30 years has been for appli
ations togrow more diverse (with new 
ategories like streaming media and personal pro-du
tivity), more 
omplex (word pro
essors 
he
k grammar and also performspee
h re
ognition and synthesis) and more memory-intensive. These trendsare likely to 
ontinue in future: the number of appli
ations running 
on
ur-154



rently on a system, the variety of appli
ations, and the variety of phase behav-iors in an appli
ation are all likely to in
rease. Appli
ations that stream mediabut perform non-trivial 
omputations in ea
h iteration, su
h as spee
h re
og-nition's beam sear
h, are prime 
andidates for pre
omputation-based prefet
h-ing.8.2 The roads not taken: Challenges for future workWhen starting out, my goal was to explore ways in whi
h the hardware-software sta
k 
ould be designed to be more responsive to the needs of individ-ual appli
ations, and to determine the e�e
tiveness of this approa
h in redu
ingthe time taken to run di�erent types of appli
ations. Impli
ations of this ap-proa
h are that both hardware and software may need to 
hange, and that theinterfa
e between the two 
ould bene�t from greater ri
hness. In the pro
essof writing this dissertation I have made many 
hoi
es of avenues to pursue.While we have used the insights yielded by DTra
k to improve prefet
hing,there are many alternative appli
ations to these insights along three broadareas: improving stati
 appli
ation layout, improving 
a
he repla
ement, andimproving s
heduling of data movement into the 
a
hes.Improving data layout: An appli
ation's data layout 
an be improvedin two ways: either by improving heap allo
ators or by providing multipleaddress mappings for individual memory lo
ations like the Impulse memory
ontroller [14℄. One interesting approa
h to improve an appli
ation's data lay-155



out is to provide not one version of mallo
 but multiple versions tuned fordi�erent types of a

ess patterns, relying on 
ompiler support to repla
e 
allsto mallo
() in the appli
ation with an appropriate spe
ialization. The mostsimilar study to this in the literature is by Wilson et al. [101℄. This approa
his however limited to appli
ations that rarely update their data stru
tures;appli
ations that update their data stru
tures at even a low rate end up witha random data layout if they run long enough. Appli
ations without updatesto the dominant data stru
tures will bene�t from this approa
h; our 
ompilerimplementation shows, in 
ombination with previous work, that determininga

ess patterns stati
ally is feasible. The open problem is translating a

esspatterns into a taxonomy of allo
ation poli
ies. We didn't have a

ess to abroad enough range of appli
ations to attempt su
h a taxonomy. Stati
 allo-
ation poli
ies to address the most frequent a

ess patterns are also synergisti
with multiple address mappings to take less frequent a

ess patterns into a
-
ount.Improving 
a
he repla
ement: The se
ond 
ategory of optimizations 
on-sists of ways to improve 
a
he repla
ement. Ca
he repla
ement 
an be im-proved either by more adaptive poli
ies [74, 81℄ or by more sophisti
ated 
a
hepartitioning. While both approa
hes have been tried in the past, a promisingline of atta
k in either 
ategory is to explore in this 
ontext the potential of anonline system to asso
iate data stru
ture 
ategories with individual memoryaddresses. Creating a more 
oarse-grained form of DTra
k analysis that 
an be156



performed online with low overhead 
ould help improve 
a
he bypassing anddead-blo
k predi
tion de
isions for either performan
e improvement or powerredu
tion. A potential further re�nement is to bind spe
i�
 
a
he partitions tosets of data stru
tures. Espe
ially in 
ombination with re
on�gurable 
a
hes,this approa
h may help avoid 
on
i
t between data stru
tures.Improvements to prefet
hing: TwoStep prefet
hing 
an be improved inseveral ways. We outline three major ideas. First, TwoStep has lower speedupsthan region prefet
hing for extremely regular appli
ations. We have shownthat TwoStep and SRP 
an be 
ombined without 
on
i
t to get the best ofboth worlds. This solution however su�ers from the potential low a

ura
y andin
reased bandwidth requirements of SRP. Combination with GRP has beenshown to be feasible, but 
ompiler support for su
h a 
ombination remainsto be implemented. A se
ond way to address regular/spatial appli
ations isto use multiple prefet
h threads like Kim and Yeung [47℄. In the 
ontext ofTwoStep, this will require the 
ompiler to generate multiple versions for ea
hprefet
h kernel: one to perform the in-order pushes to the FIFO from theL2, and another in potentially multiple instan
es to run ahead and prefet
hmultiple iterations of a loop in parallel. Third, the TwoStep 
ompiler 
ur-rently emits extremely unoptimized 
ode to run on the L2 
ontroller. Whileour appli
ations have shown no bene�t from optimizing further, it is possiblethat new appli
ations will be able to tolerate lower ratios of 
omputation permemory a

ess with more optimized prefet
h kernels. Ea
h of these is | in157



des
ending order of promise | a potential sour
e of future improvement toprefet
hing for irregular and regular programs alike.Nonetheless, this dissertation has arti
ulated a new approa
h: of ex-ploring the feasibility of dynami
 adaptation using a ri
her interfa
e betweenhardware and software, and of using dynami
 adaptation to address more 
om-plex appli
ations than have heretofore been taken into 
onsideration in systemdesign. While the implementation 
an be improved, �ne-grained or
hestrationand data 
a
he management is a valid and 
omplementary approa
h to priorapproa
hes that maximize prefet
h bandwidth utilization.
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Appendix

The �gures in the following pages show, for ea
h of the major datastru
tures in our appli
ations, the raw time-varying data every 50 million
y
les for DL1 a

esses, DL1 misses (L2 a

esses), and L2 misses. We providean overview of these �gures, enumerating for ea
h appli
ation the dominantdata stru
tures in terms of total 
a
he misses and their a

ess pattern. Formore data on these data stru
tures, 
onsult Tables 3.3{3.5.159



Ben
hmark Data stru
ture A

ess pattern164.gzip window Regularprev Regularinbuf Regularfd Regular175.vpr node Regularheap Irregularnode route inf Irregularlinked f ptr Irregular177.mesa Image RegularDepth RegularVertex RegularNormal Regular179.art f1 layer Regulartds Regularbus Regular181.m
f nodes Irregularar
s Irregularperm Regularbasket Regular183.equake K[℄[℄ Regulardisp[℄ RegularK[℄ RegularK Regular188.ammp atom Irregularnodelist Regularatomlist Regularve
tor Regular256.bzip2 blo
k Irregularquadrant Irregularzptr Irregular300.twolf netarray[℄!netptr Irregulartmp rows[℄ Irregularrows[℄ Irregular
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