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Modern computer systems spend a substantial fraction of their running time
waiting for data from memory. While prefetching has been a promising avenue
of research for reducing and tolerating latencies to memory, it has also been a
challenge to implement. This challenge exists largely because of the growing
complexity of memory hierarchies and the wide variety of application behav-
iors. In this dissertation we propose a new methodology that emphasizes de-
composing complex behavior at the application level into regular components

that are intelligible at a high level to the architect.

This dissertation is divided into three stages. In the first, we build
tools to help decompose application behavior by data structure and phase,
and use these tools to create a richer picture of application behavior than with

conventional simulation tools, yielding compressed summaries of dominant
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access patterns. The variety of access patterns drives the next stage: design

of a prefetch system that improves on the state of the art.

Every prefetching system must make low-overhead decisions on what
to prefetch, when to prefetch it, and where to store prefetched data. Visualiz-
ing application access patterns allows us to articulate the subtleties in making
these decisions and the many ways that a mechanism that improves one de-
cision for one set of applications may degrade the quality of another decision
for a different set. Our insights lead us to a new system called TwoStep with

a small set of independent but synergistic mechanisms.

In the third stage we perform a detailed evaluation of TwoStep. We
find that while it outperforms past approaches for the most irregular applica-
tions in our benchmark suite, it is unable to improve on the speedups for more
regular applications. Understanding why leads to an improved understanding
of two general categories of prefetch techniques. Prefetching can either look
back at past history or look forward by precomputing an application’s future
requirements. Applications with a low compute-access ratio can benefit from
history-based prefetching if their access pattern is not too irregular. Applica-
tions with irregular access patterns may benefit from precomputation-based

prefetching, as long as their compute-access ratio is not too low.
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Chapter 1

Introduction

For about two decades starting in the early '80s, processor clock speed
improved by approximately 50% per year, while DRAM speed only improved
at about 7% per year. As a result, the speed gap between processor and main
memory cycle time doubled approximately every 6.2 years [8,32]. Processor
speeds have since largely stopped their exponential growth, but modern sys-

tems must still deal with latencies to main memory of up to 2000 cycles.

Cache hierarchies have grown in importance as a way to mitigate the
effects of this speed gap [46,73,87-89]; today’s microprocessors often have
three levels of cache memories, with each level filtering the address stream seen
by lower levels. Caches however make assumptions of spatial and temporal
memory locality that are not always valid, and many programs still spend a

substantial fraction of their time stalling for memory.

The problem of increasing memory latency has consumed much research
effort, and yielded significant new advances. Prior work in memory-system
may be categorized into two classes: latency avoidance, and latency tolerance.
Latency avoidance techniques attempt to reduce average memory access time

(AMAT) for a set of common access patterns. Such techniques include among



others multi-word cache-lines to exploit spatial locality, victim buffers, and

skewed-associative caches to mitigate conflict misses [42, 80].

Latency tolerance techniques try to find independent useful work to
do while they wait for long-latency memory access to complete. Examples of
latency tolerance are pipelined memories and banked structures that can be
accessed in parallel [15], out-of-order processors and non-blocking caches to
discover local parallelism in a serial representation of software [4,18,39], and

more global uses of parallelism such as multi-threading [48].

Prior work has also emphasized a specific sub-category of latency toler-
ance technique. Scheduling techniques attempt to neutralize AMAT by using
the various levels of the memory hierarchy as staging stations for the effective
transfer of useful data to the processor. They include instruction scheduling
for load latencies and software-pipelining in the compiler [58,65], scheduling
accesses to DRAM in hardware [37], a variety of prefetch techniques in software

and hardware, and techniques such as read-miss clustering [69].

In spite of these advances, the memory system continues to be a major
bottleneck to performance while the variety of applications has continued to
grow. While the above techniques are often effective, their effect varies for dif-
ferent applications, and it is hard to estimate a priori the interaction between
a specific class of optimizations and a specific application. As applications
and the systems they run on grow more complex, it becomes more difficult
to determine potential sources of inefficiency and mismatch between the two.

Given the requirement to handle a variety of application workloads, scheduling



struct foo bar ;
void main () { im—
siruct foo bar ; FILE.print ("bar", bar, sizeof(bar)) ; sim-alpha
void main () { asm ("mop”) ;
for (i =0; i <10; ++i) { _
@ f2 =malloc (struct foo) ; c breeze for (i = 0; i < 10; ++i) { cc
2 = malloc(struct foo) ;
NAME="f2";

} ) @ PTR=12; if (inst == mop) {
SIZE = sizeof(f2) ; addLayout () ;
asm("mop’) ; }

}

Figure 1.1: DTrack toolchain

promises the greatest flexibility at runtime in adapting to the needs of different

programs without dilating critical paths in a memory access.

In this dissertation we perform a detailed application characterization
that decomposes program behavior by data structure and phase. We summa-
rize the rich picture provided by such data into dominant access patterns for
different phases in each application. We then focus on the irregular applica-
tions that are challenging for prior work and describe some key properties of
these programs. These key properties then drive the next phase: the design of
a novel prefetching microarchitecture called TwoStep. The rest of this chapter

outlines this process in greater detail.

1.1 Detailed application characterization: data struc-
tures and phases
Understanding how applications use the memory system is important
to at least three groups: (1) system designers who can apply insights into

memory system usage to improve hardware and software memory optimiza-



tion techniques, (2) application writers who can understand how their program
uses the memory system and optimize for better locality, and (3) benchmark
developers who want to ensure that the diverse patterns of behavior in real-
istic applications are represented. While many tools have been developed to
analyze memory behavior [53,60, 63, 96|, none give insight into the behavior of
individual data structures within a program. Our tool — DTrack — gathers
memory system statistics on a per data structure basis, to help identify those
data structures that have the strongest influence on performance and to offer

insight into their size and access patterns.

Figure 1.1 outlines the structure of the DTrack toolchain. DTrack con-
sists of a C-to-C compiler that automatically instruments variable allocations
in programs and a detailed timing simulator that consumes this instrumen-
tation. This combination yields a tool that generates data profiles - detailed
breakdowns of cache misses by the different high-level data structures in the
source code. In our experiments with DTrack, we measure the distribution
of misses in major data structures, the impact of these misses on total cycle

count and on time spent stalling in the pipeline.

Given this data profile, we then manually combine it with a conven-
tional code profile to determine the dominant access patterns for each data
structure. Figure 1.2 summarizes the access patterns of three representative
applications as the manner in which the major loops traverse the major data
structures. Since most cache misses in these programs occur within these loops,

we can focus on them and treat the entire application as simply a sequence of



[ 179.art

1=4344 i= i+l {
f1[i] bu[i]
¥ }
Cl) b)
I1. 181.mcf
node = DFS(node) {
i=1i+1 { node->child
node[i] node->parent
} node->sibling
node—>prevSibling
}
Cl) b)

111. 300.twolf

i = rand() {
t1 = blc[i]->cblock]
t2 = tl->tile->term
t3 = n[t2->net]

}

Figure 1.2: Access patterns of major loops: the sequence of objects touched
in each iteration. The expression outside the body shows how the induction
variable changes for each loop (DFS denotes depth-first traversal); the body
enumerates important loads dependent on the induction variable.



iterations from its major loops. The major loops in all our applications have

the following key properties:

e They exhibit a wide variety of access patterns, both between different

applications and within some applications.

e While access patterns can be very different in different loops, each loop
can be summarized in a symbolic manner like the examples in the pre-

vious section.

e Each loop iteration performs a series of memory accesses that are often

chained together by data and control dependences.

e Even though individual loop footprints can far exceed conventional cache
capacities, the footprint of each individual loop iteration is small and

occupies just a few cachelines of a normal level-1 data (DL1) cache.

e Most of the hard cache misses occur on the first access to an object in a

loop iteration.

All but the last of these points are conventional wisdom; our characteriza-
tion helped us to quantify their effects, and to focus our attention on these

particular properties.

1.2 Summary of prior approaches

Numerous prefetching techniques have been proposed in the litera-

ture, using both software and hardware, and initiating both single short-range



prefetches and long-range sequences of prefetches at a time. Purely software
prefetching, using the compiler to strategically place prefetch instructions in
an application’s instruction stream, is a common approach [13,59]. However,
it is often hard for the compiler to statically place a prefetch the right distance
before its use. If the prefetch is too close to its use, its latency is not entirely
overlapped; if the prefetch is too far, the prefetch is likely to pollute the cache

and itself be evicted before use.

Prefetching with hardware support provides greater flexibility at run-
time in modulating the slack between prefetch and use based on application
needs. Prior studies have resulted in many such prefetching techniques, first
issuing prefetches one at a time, either under compiler control [13,59] or using
special hardware that is triggered on specific events such as cache accesses [87],

cache misses [16,41] and dead block speculation [49].

Under the pressure of growing latencies to main memory, recent work
has focussed on ways to issue systems of prefetches at a time. The search for
ways to determine sequences of addresses to prefetch has proceeded in two
largely independent directions driven by conflicting application requirements.
The first consists of using prior history in an application’s execution to specu-
latively select systems of prefetches, expressed either as a region of the address

space [55,99] or as an affine function [43, 85].

The second direction consists of precomputation - creating a prefetch
thread in either hardware or software that runs ahead of the application and

determines what to prefetch [11,66,93,103,105]. This precomputation may



come from running special kernel programs, copies of the application under
various speculative modes, or dynamically generated sequences of instructions.
Both approaches have drawbacks. History-based approaches are unable to gen-
erate accurate prefetches in the presence of arbitrarily complex access patterns.
On the other hand, open problems in precomputation-based approaches are
low-overhead throttling to avoid cache pollution when the prefetch thread runs
too far ahead, and prioritizing between independent prefetches issued by the

prefetch thread.

Summary of drawbacks: The state of the art in prefetch techniques has
several major limitations; the major decisions of what to prefetch, when to
prefetch it and where to prefetch to remain challenges in their most general
setting. First, deciding what to prefetch is a challenge for irregular programs
that interleave spatial access and pointer dereference in complex ways, and
modern prefetch techniques are often better tuned for one of those access pat-
terns than others, such as prefetching arrays or chasing pointers. Applications
whose access patterns are too complex for current approaches are also often
the ones with the worst baseline performance and therefore most in need of
improvement. They are also unlikely to fade in importance; current trends of
growing application footprint, increasing software complexity and the need for
greater flexibility at deployment-time have made the use of pointers increas-

ingly common [10, 67, 72].

Second, mechanisms that improve prefetch accuracy for one set of appli-
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cations often end up causing tighter timing constraints for another set resulting
in prefetches that are either initiated too late to be effective or those that enter

the cache too early and pollute it.

Finally, the greater sensitivity of the DL1 to pollution has resulted
in most approaches prefetching exclusively to the L2. We now outline our
approach to address these drawbacks, driving our study with a detailed char-

acterization of application characteristics.

1.3 TwoStep: Microarchitecture and compiler for
precomputation-based prefetching

The competing advantages of history- and precomputation-based prefetch-

ing are largely complementary. Rather than choose between the two, we



call for a synthesis driven by application characteristics. Our approach is
to select between history- or precomputation-based prefetching depending on
whether the application is respectively more likely to be constrained by MLP
or prefetch accuracy, using the twin metrics of computation per memory ac-
cess and access-pattern irregularity. Our results show that these metrics are
effective at predicting which applications will benefit from history-based and

which from precomputation-based prefetching.

We begin our design by focussing on the challenges posed by irreg-
ular programs and use the above analysis to guide the design of a novel
precomputation-based prefetching system - TwoStep. Our design (Figure 1.3)
consists of a statically-generated prefetch program that executes on a pro-
grammable prefetch controller. Our prefetch programs are powerful enough to
encapsulate strided, pointer and index-array access. This allows us to cover
the broad variety of access patterns. In order to minimize latency between
dependent prefetches, we place the prefetch controller in the L2. In order to
avoid pollution in the DL1 we push each prefetch from L2 to a FIFO between
L2 and DL1. Prefetch culminates in the movement of a fixed number of cache-
lines into the level-1 data (DL1) cache. Since the focus of TwoStep prefetching
is on the first access to each object in a loop, this movement is orchestrated by
an ISA enhancement we call the Pull instruction, inserted at the start of each
loop iteration in order to bring into the DL1 the cache-lines that constitute
the working set of that iteration. Since loop iteration footprint is low, pollu-

tion in the DL1 due to occasionally inaccurate prefetches is bounded. Finally,
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the presence of the FIFO and Pull instructions makes it easy to throttle the
prefetch thread — the prefetch program stalls when the FIFO is full. This

lightweight mechanism for throttling avoids polluting the L2.

We implement a compiler for TwoStep to automate the generation of
prefetch kernels from application source code. Our compiler improves on the
state of the art [47] by requiring less profile information (iteration counts for
loops only) and by performing a more aggressive search of the state space of
loop cluster combinations to select the most favorable loops. The combination
of compiler support and these microarchitectural mechanisms provides effec-
tive prefetching for irregular applications, including several that have been

challenging to prior work.

However, comparisons with Guided Region Prefetching [99] show that
precomputation fails to achieve as much benefit on more regular applications
with spatial locality. A detailed analysis reveals that the trends shown by
the two competing techniques are representative of the more general classes
they belong to: backward-looking history-based prefetching vs forward-looking
precomputation-based prefetching. History-based prefetching consists of track-
ing the history of the address stream for an application and making predic-
tions based on the assumption that future behavior will be similar to the past.
Precomputation-based prefetching, on the other hand, does not make this as-

sumption and instead explicitly precomputes the application’s future needs.

We find that application affinity for one class or the other is decided

by two major properties: access pattern regularity and computation per mem-
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ory access. Applications with irregular access patterns will clearly have high
affinities for history-based prefetching. This is not surprising; regular access
patterns are easier to predict based on knowledge of the past address stream.
Conversely, we expect irregular applications to prefer precomputation-based
prefetching. More surprising, however, applications with irregular access pat-
terns require more computation per memory access in order to benefit from
precomputation-based prefetching. The greater prevalence of dependences
and sequentialization causes poor utilization of prefetch bandwidth and makes

them more sensitive to the critical path in a loop.

When the memory footprint of a loop exhibits significant locality, history-
based prefetching can issue prefetches in parallel and tolerate much ‘tighter’
loops with less computation per memory access. However, such approaches
fail to benefit applications with low spatial locality, and accurate prefetching
requires a precomputation thread to run ahead of the main program gener-
ating prefetches. This approach is however constrained in its memory-level
parallelism, and as a result cannot be applied to loops with low levels of com-
putation per memory access. This analysis of the state space provides the
basic intuition behind the complementary nature of these two categories of
prefetching. Different loops in an application require either one or the other.
As a result, combining region prefetching with precomputation is a feasible

approach, and we show that this combination successfully achieves the best of

both worlds.
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1.4 Dissertation organization and contributions

In this dissertation we focus on the shortcomings of past work in prefetch-
ing irregular memory-intensive applications and try to remedy these short-
comings without compromising hard-won improvements for other applications.
Our solution combines features from software and hardware as well as local and
global approaches to prefetching. It consists of a compiler-generated prefetch
program that runs on a simple in-order programmable prefetch controller in
the level-2 cache (L2) [99]; a FIFO between the L2 and the level-1 data (DL1)
cache that receives every prefetch generated by the prefetch controller [97];
and ISA enhancements that provide hints on each loop iteration in the main
program, including its bounds, expected footprint, and access patterns. The
ISA enhancements encode general properties about a program that could be
used by other techniques as well, and we show how to use them to orches-
trate data transfer from FIFO to DL1. In particular, this thesis makes three

contributions:

e A detailed characterization of irregular applications to first establish the
feasibility of overlapping access latency in them, and then glean some

insight into their access patterns.

e The design and evaluation of a prefetch technique called TwoStep that
combines the benefits of software and hardware as well as short- and

long-range prefetching.
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e The insight that precomputation- and history-based prefetching are com-
plementary approaches, with strengths and weaknesses in opposition to
each other. Applications with irregular access patterns can benefit from
the the greater flexibility of precomputation; applications with low com-
putation per memory access require the better bandwidth efficiency of

history-based approaches.

The rest of this thesis is structured as follows. In Chapter 2 we survey the prior
literature in several areas related to this dissertation. Chapter 3 describes our
framework for decomposing memory behavior by data structure and summa-
rizes the results of this study. Chapter 4 similarly describes our framework for
studying phase behavior, with a novel adaptive algorithm to identify the best
granularity at which to view the phase behavior of an application. Chapter 5
describes our TwoStep prefetch microarchitecture and presents the results of
an initial study with hand-crafted kernels. Chapter 6 describes the TwoStep
compiler and characterizes the state space seen by it for our applications.
Chapter 7 puts microarchitecture and compiler together for a comprehensive
evaluation, quantifying the strengths and weaknesses of TwoStep compared to
other techniques that rely on spatial locality, and showing that the two kinds
of prefetching are amenable to recombination. Finally, Chapter 8 summarizes

our insights from this work and identifies areas for future study.
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Chapter 2

Background and related work

In this section, we summarize the related work that we build upon in
this thesis. In tune with the structure of the thesis, we break down our analysis
into three categories - memory visualization and characterization tools relevant
to DTrack, the body of prefetching studies relevant to TwoStep, and finally
the prior work in whole-program analysis, pointer analysis and slicing that the

TwoStep compiler is based on.

2.1 Visualizing application memory behavior

Simulation is a common method of producing aggregate memory statis-
tics [1,9,33,89]. More sophisticated cache memory behavior analysis tools
have been developed [53,60,61,63,64,96], and this section compares DTrack
to this prior work. Our work differs from these tools in that we consider pointer
data structures in addition to arrays, and show that aggregate statistics ob-
scure possible optimization opportunities revealed by phase behavior. This

increased detail comes at a cost of increased simulation time.

Most tools have focused on aggregate data structure and procedure-

level information for arrays [53,60,61]. Lebeck et al. [53] and Martonosi et
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al. [60] present data structure and procedure level aggregate miss information,
and classify misses as compulsory, capacity, and conflict. Both papers also
present a number of software optimizations for improving cache performance.
While these tools point users to the code and arrays that cause problems, they
examine the behavior of an array within the context of a single procedure,
resulting in two weaknesses. First, because they do not perform cross data
structure analysis, it is not directly apparent from their aggregate data statis-
tics which data structures interfere with themselves or with others. Second,
since they do not perform cross-procedure analysis, optimizations chosen to
improve performance of one array/procedure combination may diminish per-
formance in another procedure. Finally, both tools handle only regular array-
based data structures rather than pointer-based data structures. McKinley
and Temam analyze the complementary dimension of inter-nest and intra-nest
loop locality [63, 64], but again consider only arrays and aggregate information

between loop nests.

2.2 Analyzing time-varying behavior

Several tools have studied time-varying behavior. The Cache Visual-
ization Tool [96] demonstrates the time-varying behavior of arrays as they
march through the cache. The graphical component of this tool colors cache-
lines according to their locality and misses by data structures, so the user
can see which cache-lines cause conflict misses. This level of detail supports

analyzing a single loop nest at a time, whereas we analyze data structure
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phase behavior across much longer periods. Chilimbi et al. [20,78] analyze
compressed program traces, decompose them into hot data streams, and use
these hot data streams to drive layout and prefetching optimizations. This ap-
proach of searching for access patterns across the different data structures in a
program is complementary to ours, which attempts to decompose application
access patterns by data structure. We believe our approach is more effective
at providing intuitions about application behavior that are useful to humans

in different roles.

More recently, several studies have used some form of code signature
to detect phase boundaries. Basic Block Vectors (BBVs) are currently the
most accurate method to generate code signatures, and several studies explore
their uses in clustering phases and detecting phase transitions in an offline [83,
84] and online [86] setting. One alternative to BBVs is the use of program
counter or Extended Instruction Pointer Vectors (EIPVs) [6], whose merits
have been debated by Lau et al. [51]. Another alternative consists of more
high-level metrics based on code structure, such as register use vectors or loop
vectors [52]. All these studies, however, select an arbitrary sampling period
and use it for all the applications they evaluate. In this study, we provide a
more rigorous method to separately determine the correct sampling period for

each application.

Perhaps the most similar work to ours is the online phase detector of
Nagpurkar et al. [68]. Their system maintains a current window of object

references within a JVM and assesses the similarity of the recent references
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in it to those in an older trailing window. Like our study they evaluate the
effect of window size (sampling interval) on phase detection. While our study
looks for phases in fine-grained behavioral statistics of an application, they
study phase behavior in the functional list of object references touched by an

application. The two approaches are complementary.

2.3 Prefetching

Prefetching has been an important tool in combating growing memory
latencies in both the compiler and microarchitecture, and as a result there
is a large body of research in this area. We break it down into several cate-
gories below, focussing on important studies in each and elaborating on their

relationship with our scheme.

Spatial prefetching and stream buffers: The earliest systems performed
prefetching for array-based numerical codes. Software-based solutions detected
array references and loop induction variables to prefetch a fixed number of iter-
ations in advance for complex loop nests [12,59]. These solutions were geared
towards array-based applications with a very different patterns of behavior
from our focus in this work, and we do not consider them further. The earliest
hardware prefetch systems systems simply brought in the next cache-line on a
miss [87]. Developments and enhancements have proceeded along several di-
rections. First, a variety of techniques have been studied for region prefetching,

culminating in the work of Lin et al. [55]. Second, spatial hardware prefetch-
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ers used stream buffers to avoid cache pollution in the presence of inaccurate
prefetches [42,45, 71]; we focus on two exemplars of the state of the art. Sher-
wood and Calder [85] couple stride prediction with stream buffers, while Hur
and Lin [38] adaptively vary stream length at an application granularity. Our
mechanism draws inspiration from stream buffers as a mechanism to avoid
cache pollution. However, stream buffers are inadequate to our needs for two
reasons. First, they lengthen the critical path of a normal cache access to
search a cache and associated stream buffers, either in series or parallel. Sec-
ondly, the stream-buffer approach to handling inaccuracies in prediction does
not fit our model. Stream buffers can be seen as a constantly evolving set of
hypotheses on the stream of addresses that a program needs. When one fails,
the stream buffer is simply flushed to make way for another hypothesis. In
the context of irregular applications, however, the compiler-supplied hypoth-
esis is a valuable resource and our mechanism is able to tolerate momentary
inaccuracies in the FIFO without needing to frequently flush it. While Hur
and Lin do not spend time constructing elaborate hypotheses, their approach
focusses exclusively on spatial cache misses, finding short streams even in ir-
regular programs. Our approach is complementary, focussing instead on the

more difficult non-spatial cache misses.

Software prefetching by compiler-inserted instructions: Based on ear-
lier work on array-based programs, Lipasti et al. performed an early study

showing that benefits could be obtained by prefetching pointers passed as pa-
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rameters to function calls [56]. Luk and Mowry identified the main problem
to overcome in array-based prefetching: the presence of pointers introduces a
serialization between prefetches, so that prior prefetches must return before
more progress can be made [59]. They performed a thorough analysis of the use
of jump pointers to overcome this serialization. Cahoon and McKinley built
on the work of Luk and Mowry by performing interprocedural dataflow anal-
ysis in an object-oriented environment with virtual-method calls [12]. These
studies handled regular pointer-based codes such as linked-list and binary tree
traversal with success. However they are unable to adapt the slack given to

prefetches at runtime.

Hardware prefetching by detecting patterns in the address stream:
Another line of prefetching studies add hardware enhancements to support
the prefetching decision. A number of studies have found successively more
sophisticated patterns to prefetch by observing the patterns of an applica-
tion’s address stream. We note the progression of ideas from early studies
on detecting variable-stride patterns such as by Chen and Baer [19], through
studies on Markov prefetchers that use cache misses to trigger further cache ac-
cesses [5,41, 77|, finally culminating in the work of Iacobovici et al. [40], which
presents complex stride-detection hardware to track and predict a variety of
affine access patterns. Dead-block correlating prefetchers are another devel-
opment on this idea, triggering prefetches not on specific cache misses, but on

the earlier speculative eviction of cache-lines [49]. All these studies assume
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that there are patterns to be found in the address trace, and in practice are at
the mercy of pathologies of memory allocators. They also need cache misses
to perform prefetches, and are therefore self-limiting in the improvement they

can bring.

Hardware-based pointer prefetching: Several studies have attempted to
model pointers themselves rather than raw address streams. An early expo-
nent was the study of jump pointers by Roth and Sohi [76], showing them to
be feasible for prefetching in both software using hand-coded kernels and in
hardware using a specialized unit to construct chains of jump pointers and
store them in the interstices of heap allocations. In spite of being amenable
to implementation in hardware, jump pointer-based prefetching suffers from
the classic problem of software prefetching - an inability to adaptively time

prefetches based on dynamic changes to a program.

Recent work on content-directed prefetching emphasizes this aspect [3,
23]. These studies contain a prefetch mechanism consisting of a simple hard-
ware unit that scans incoming cache-lines for pointers and initiates prefetches
along them. They also include a reinforcement mechanism that adaptively
prunes pointer paths that a program does not use. This approach has two
drawbacks. First, it addresses pointer and indirect prefetches, but is unable
to avoid spatial misses for objects larger than a cache-line. TwoStep is able
to handle arbitrary interleavings of regular and irregular types of access. Sec-

ond, like address-stream-based approaches described above, it relies on cache
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misses to trigger prefetches albeit in a more efficient manner. TwoStep allows
the prefetch thread the opportunity to run ahead regardless of cache misses
or other pipeline state. As an extreme example, a low-ILP application with a
high computate-store ratio but irregular access patterns would spend a signif-
icant portion of its time stalling for memory in spite of such a pointer prefetch
system. TwoStep would however be able to stay ahead of the main program

and avoid most DL1 misses.

Programmable prefetch engines: While the above pointer prefetching
studies could get multiple iterations ahead of the main program, they were
focussed on pointers alone and unable to handle more sophisticated access
patterns combining spatial and pointer access. A couple of recent studies have
addressed this. Guided Region Prefetching by Wang et al. provides hints in
load instructions that can permit the L2-based prefetch engine to run ahead
of the program [99]. However, this work avoids pollution by a hard bound
on the number of iterations the prefetcher can run ahead. The Push model
of Yang et al. adds engines at each level in the cache hierarchy that each
execute specialized kernels to push data to the level above [102]. Compared
to our work, that study has several differences. First, it is designed for purely
pointer-based traversals and is unable to handle combinations of spatial and
pointer-based access. Second, it involves much more hardware complexity
by adding engines at each level of the memory hierarchy, engines that are

superscalar and implement complex heuristics for prioritizing and throttling
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accesses. The use of a FIFO serves to substantially simplify our design relative

to theirs.

A third study with some similarity to our own is the programmable
prefetch engine of VanderWiel and Lilja [97]. This study uses a prefetch engine
similar to ours that prefetches to both DL1 and L2. However, it avoids pollu-
tion by using tags on cache-lines (rather than on instructions as in TwoStep)
to maintain a producer-consumer relationship between processor and prefetch
engine. In spite of being programmable, this engine was designed for largely
array-based codes, and used a simple intra-procedural analysis to generate
prefetch programs. TwoStep extends this approach to support irregular appli-

cations.

Novel processor architectures with prefetching effects: The primary
architectural idea inspiring TwoStep was the decoupled access/execute archi-
tecture of Smith [90]. We believe it is the work closest in spirit to ours, using
software-controlled queues to manage slip between execution and memory-
access “streams”. Designed in a very different context, the motivation of
this design was to sidestep the Flynn bottleneck (approximating later super-
scalar designs) and to overlap multiple instructions with simple issue logic
(approximating out-of-order execution). It is useful to enumerate the differ-
ences between decoupled architecture and TwoStep. Compared to this early
study, we maintain an asymmetry between the two streams, relegating the

access stream to a purely performance-enhancing function and reducing the
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frequency of synchronization “handshakes” between the two streams.

Several recent studies have made dramatic changes in overall proces-
sor microarchitecture, resulting in prefetching effects among other benefits.
The RAW architecture reports substantial speedups for irregular applications
using a more explicit orchestration of data movement and with loss of com-
patibility with existing programming models [94]. Over common applications
- mcf and twolf - we show comparable improvements in TwoStep but with a
more conventional ISA and software stack. Datascalar and Slipstream pro-
cessors simultaneously run a program on multiple processors and cause it to
speed up on each of them [11,93]. Runahead execution is more parsimonious
and utilizes processor resources to run in “speculative” mode when it would
otherwise be stalled [66]. While runahead execution has benefits beyond just
prefetching, we note that like some of the hardware prefetch schemes above
it only performs prefetches during cache misses, thereby being less efficient in
overlapping latency. It is also unlikely to be effective in prefetching serialized
pointers since a stall in one pointer would invalidate all computations based

on it.

Summary: As the above survey shows, TwoStep benefits from the lessons
of a large number of prior studies. Many of these studies share some points
of similarity but make design decisions that cause them to be ineffective on
irregular programs. The novel architectures surveyed above yield some of

the benefits of TwoStep but at greater cost or with a change in programming
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model. A common thread among many prior studies is to use cache miss events
to trigger prefetches. Like the designers of dead-block correlation prefetching,

we find this approach to be self-limiting [49].

2.4 Slicing and whole-program analysis

Interprocedural or whole-program analysis has been the topic of much
research attempting to improve its efficiency in a variety of contexts: pro-
gramming languages with and without pointers [34, 35], automatic paralleliza-
tion [79], and a variety of specific analyses such as constant propagation [29],
side-effect analysis [21] and escape analysis [7,26]. Whole-program analysis
and pointer analysis often have a symbiotic relationship in the context of lan-
guages with pointers like C [17]; aggressive pointer analysis must necessarily
be a whole-program analysis, while other applications of whole-program analy-
sis often require points-to information. Again, much effort has been expended
on the development of efficient algorithms for whole-program pointer analy-

sis [24,27].

There has been relatively less work in slicing, with applications largely
in the field of program-understanding [36, 50, 100]. Our application of slicing
is rather different from this conventional use; while most slicing studies focus
on finding minimal slices while retaining full coverage, our focus is on finding
sparse regions in a slice that maximize the amount of computation not in the
slice. In particular, full coverage for pathological cases is not a concern since

we use slices for performance, not correctness. Also, while most slicing studies
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use a static representation of program structure, simply returning the set of
static program statements that belong in a slice, our view is more ordered
and context-sensitive: the compiler must return a context-sensitive sequence

of statement instances.

2.5 Compiler support for precomputation

Compilers for precomputation are based on program slicing and typ-
ically operate either by post-compilation binary translation [54,76,77] or at
runtime in a dynamic compiler [104]. Computing slices in hardware restricts
the scope of individual slices, while binary translation detects only simple
pointer-chasing patterns. The state of the art in thorough compiler-based pre-
computation is the work of Kim and Yeung [47]. Kim and Yeung’s compiler
framework uses 2 kinds of profile information — loop iteration count profiles
and cache miss profiles — to select compute precomputation slices for exe-
cution in spare hardware contexts of a simultaneous multithreading (SMT)
processor. We perform a more detailed comparison of this compiler with ours

in Chapter 6.
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Chapter 3

Data structure decomposition using DTrack

This chapter describes DTrack and our methodology for analyzing ap-

plications, and performs a detailed analysis of the data structures of twelve

applications. DTrack separates by data structure the stream of addresses an

application requests from memory. Our exploration reveals a wide variety of

application behaviors and shows that opportunities for overlapping latency

exist if hardware can adapt to application requirements.

3.1

DTrack: A tool for studying irregular applications

DTrack consists of a source-transformation tool to automatically in-

strument memory allocation points in programs and a detailed timing simu-

struct foo bar ;
void main () {
for (i = 0; i <10; ++i) {
@ f2 =malloc (struct foo) ;

}
}

c—breeze

struct foo bar ;

void main () {
@ FILE.print ("bar", bar, sizeof(bar)) ;
asm ("mop") ;

for (i =0;i <10; ++i) {
2 = malloc(struct foo) ;
@ NAME ="f2";
PTR=f2;
SIZE = sizeof (f2) ;
asm("mop") ;

cc

sim-alpha

if (inst == mop) {
addLayout () ;
}

Figure 3.1: DTrack toolchain
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lator that consumes this instrumentation. The source instrumentation maps
addresses to data structures in order to communicate the address range cor-
responding to each variable to the simulator. Figure 3.1 shows a schematic of

our tool.

The instrumentation tool is an extension to the C-Breeze C-to-C com-
piler [30], while the simulator is a detailed and validated timing model of the
Alpha 21264 pipeline [25]. For each variable in the program, the compiler-
generated instrumentation stores the variable’s name and address at a desig-
nated location in memory and interrupts the simulator by means of a special
opcode (“mop” in Figure 3.1). On executing this instruction at runtime, the
simulator imports the information from this designated location in simulated
memory. Since the simulator knows the extent of each variable in the appli-
cation at any time, it maps the virtual address of each memory access to a
specific variable, and maintains statistics on the progress of the memory access
by the data structure it belongs to. Classifying and assigning each load and
store to a specific variable slows the simulator down by 60% on average and

100% in the worst case.

3.2 Design decisions

The challenge here is to keep the overhead due to the instrumentation
low and to minimize the perturbance to the application. There are two levels
of overhead to consider. The first is overhead in the simulator; classifying

each load and store to a specific variable and incrementing the appropriate
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counter slows the simulator down by 60% on average and 100% in the worst
case. The second and more serious source of overhead is instrumentation
in the application itself. In addition to increasing the simulator’s burden,
application-level instrumentation could perturb the program under study and
so compromise our results. Instrumentation design is therefore guided mainly

by minimizing application perturbance:

e Stack variables are not instrumented because the high frequency of scope
changes would raise the instrumentation overhead too much. Instead, we
treat the stack as a single data structure and coalesce all accesses to it
by a simple range test. Our results will show that misses to the stack

are generally negligible.

e Global variables have a constant range over the lifetime of an applica-
tion. We communicate the ranges of these variables by writing them
to disk and signalling the simulator as shown by instrumentation “1”
in Figure 3.1. Since these file operations are a fixed-time initialization
cost, they provide the most efficient amortized mode of communication

for global variables.

e Tracking dynamic allocations on the heap is difficult because the same
raw address could be allocated to different data structures at different
times in a program’s execution. DTrack instruments heap allocations
and deallocations (“2” in Figure 3.1) and tracks them in the simulator,

using them to dynamically change the data structure corresponding to
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each address. We distinguish data structures on the heap by call-site.
As a result we are unable to distinguish between multiple allocations at
a single call-site. This design is not a concern in the SPEC-2000 bench-
marks we study, but might be a limitation in studying more fine-grained
object-oriented applications, where a single allocation site produces lots

of objects in multiple data structures.

Taken together, these design decisions are successful at limiting instrumen-
tation overhead to 10 instructions per heap allocation and 4 instructions per
deallocation. This results in total overhead of less than 0.6% of total in-
struction count across all the benchmarks we study except gzip, where the
instrumentation is 3.7% of total instruction count because of frequent heap

allocations in inner loops.

Alternatives: We considered and discarded several alternatives to this method-
ology for classifying memory accesses. First, we considered hardware counters
rather than simulation to reduce the turn-around time on our results. How-
ever, hardware counters do not have the fidelity and flexibility to track cache
misses to many specific fine-grained memory regions. Second, we considered
using the debugging symbol-table information in application binaries, but we
could not find a way to handle applications with custom memory allocators,
such as twolf. Our methodology makes it easy to inform the C-Breeze pass
about the names and prototypes of application-specific custom allocation rou-

tines, along with information about how the size of the allocation is obtained
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Feature | Size/Value
Data caches

DL1 cache 64 KB, blocksize 64 bytes, 2-way,
3 cycles

L2 cache 512 KB, blocksize 64 bytes,
direct-mapped, 12 cycles

TLBs 128 entries

Main memory

Peak bandwidth 1.6Gbytes/s

Rambus geometry 64 banks * 512 rows * 2KB/row

Access latency (cycles) | 32 PRER + 24 ACT + 48 RD/WR
+ queuing

Out-of-order Processor

Pipeline width 4

Int ALUs, multipliers | 4,4

FP ALUs, multipliers | 1,1

Branch predictor Tournament, 1 KB x 1 KB local,
4 KB global, 4 KB choice

Table 3.1: Details of the simulated Alpha 21264-like processor and memory
hierarchy

from the arguments to the allocation routine. We began by performing just
cache simulation, but migrated to a full-scale timing simulator in order to
be able to estimate IPC improvements due to optimizations for specific data
structures. Finally, we used a detailed and validated out-of-order processor
simulator because Pai et al. showed that an out-of-order processor presents to
the memory hierarchy a very different sequence of memory accesses than an

in-order processor [70].
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Benchmark | IPC DL1 L2
Miss-rate | Miss-rate
164.gzip 1.39 2.3 3.9
175.vpr 0.67 3.0 35.3
176.gcc 1.15 3.2 10.4
177.mesa 1.06 0.9 23.4
179.art 0.23 14.8 74.9
181.mcf 0.14 24.1 60.5
183.equake | 0.58 14.1 29.4
186.crafty 1.21 1.3 4.3
188.ammp | 0.57 10.0 45.0
197.parser 0.97 3.6 21.5
256.bzip2 1.16 2.1 32.6
300.twolf 0.51 9.5 26.9
sphinx 0.58 15.8 41.9

Table 3.2: The benchmarks we use and their aggregate memory hierarchy
behavior

3.3 Methodology: Benchmarks, inputs and simulation

periods

We now describe our methodology for the experiments in this disserta-
tion, including simulated machine configurations, benchmarks and simulation
interval selection. We use a version of the sim-alpha [25] timing simulator
modified to consume the DTrack instrumentation and maintain cache and TLB
statistics by data structure. Figure 3.1 shows the baseline configuration we
simulate, including a Rambus memory model. Table 3.2 lists some aggregate
properties of the benchmarks we study, including average instructions per cy-
cle (IPC) and miss-rates at the level-1 data (DL1) and level-2 (L2) caches. Our

benchmarks range from regular ones such as 179.art to highly irregular ones
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such as 300.twolf, from compute-bound (164.gzip) to memory-bound (181.mcf).
We are unable to study the remaining 3 C benchmarks in the SPEC2000 suite
due to methodological difficulties; 253.perlbmk no longer builds on our Alpha
platform with the latest version of libc, and 254.gap and 255.vortex run incor-
rectly on our native Alpha platform because of unaligned addresses generated
by their custom memory-managers. While these unaligned addresses could
be fixed by modifying the benchmark sources, we estimate that adding the
necessary padding could significantly perturb benchmark behavior. All our

simulations use the designated ref input set for the corresponding benchmark.

Simulation intervals: We used two sets of simulation intervals for our sim-
ulations. First, for the study of global phase behavior in the next chapter we
simulated each of our applications to completion. To keep experiment dura-
tions reasonable we partitioned the total run-time for each application into
chunks of 1 billion instructions, and performed a set of simulations in parallel
on a cluster of Linux workstations managed by Condor [57]. Each simula-
tion performs functional simulation for a staggered duration, then performs
detailed timing simulation for 1 billion instructions. We then aggregated the
results of all these simulations offline to generate phase data for the entire

application.

In principle, our parallel approach can introduce errors due to the cold
caches that appear every billion instructions. All but one or two billion-

instruction samples in each of our benchmarks encounter at least 6.7 million
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misses in the DL1 and 0.4 million misses in the L2. Only 164.gzip and 177.mesa
often have less than 2.8 million L2 misses per billion-instruction sample. Since
the error due to extra compulsory misses is a maximum of 512 misses in the
DL1 and 8192 misses in the L2 in every billion instructions, the fraction of
extra compulsory misses we introduce is no more than 0.05% in the DL1 and

1.8% (0.2% excluding mesa and gzip) in the L2.

The results of these experiments, when correlated with high-level loops,
yielded the major outermost loops that constitute more than 90% of the ex-
ecution of each of our applications. For all our experiments except for phase
behavior we then selected one iteration of this outermost loop, demarcating
the start and end of this iteration by a special ‘marker’ opcode using the tech-
niques outlined above, performing fast functional simulation until we reach
this opcode, and detailed timing simulation thereafter until reaching the end
marker. These simulation periods have been verified to be representative of

each application’s runtime and aggregate cache miss behavior.

The exceptions to this methodology are the applications 176.gcc, 186.crafty,
197.parser, and sphinx, for which we were unable to generate global phase data
due to infrastructural issues. For these applications we determined the end
of initialization by inspecting their source code and simulated 500 million in-

structions past this point.
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Figure 3.2: Decomposition of DL1 misses and accesses by data structure. L2
misses show similar trends to DL1 misses.
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3.4 Results: Data profiles and distributions

Having described DTrack and our experimental methodology, we now
present a detailed characterization of the above SPEC benchmarks using D'Track.
We begin by studying basic data profiles generated by DTrack, and then ex-
plore two ways that this new capability to visualize the behavior of different
data structures can be used to help answer sophisticated architectural ques-

tions.

DTrack generates data profiles. Figure 3.2 breaks down the aggregate
memory behavior of our applications — accesses and miss-rates at the DL1 and
L2 — by the three data structures that cause the most DL1 misses (DS1, DS2,
DS3), the stack, and everything else. Figure 3.2.a shows that the breakdown
of accesses to the DL1 (and therefore the rest of the memory hierarchy) varies
greatly across our applications. While 179.art and 181.mcf have skewed dis-
tributions, with 80% of all accesses coming from 2 data structures, 300.twolf,
176.gcc and 186.crafty have extremely balanced distributions; no data struc-
ture contributes more than 2% of accesses, and it takes 60-100 distinct data
structures to account for 90% of cache misses. Other applications lie between

these extremes.

While accesses are often spread out, Figure 3.2.b shows that misses
tend to cluster. The top 5 data structures usually contribute more than 90%
of all DL1 misses. The exceptions are 176.gcc, 186.crafty, and 197.parser with
a long tail of minor data structures that respectively end up accounting for

84%, 67% and 78% of all cache misses. Among the other applications, the
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‘ Name ‘ Type ‘ Access ‘ Footprint ‘ Object ‘
164.gzip
window Array | Regular 64KB | 2 bytes
prev Array | Regular 64KB | 2 bytes
inbuf Array | Regular | 184320KB | 1 byte
175.vpr
rr_node Array | Irregular | 10638KB | 40 bytes
rr_heap Array | Irregular 6717KB | 24 bytes
rr node_route_inf | Array | Irregular 2653KB | 16 bytes
176.gcc
reg_last_sets Array | Irregular 0.5KB | 8 bytes
reg_last_uses Array | Irregular 0.5KB | 8 bytes
qty_const_insn Array | Irregular 4KB | 8 bytes
177.mesa
Image Buffer Array | Regular 2560KB | 2 bytes
Depth Buffer Array | Regular 5120KB | 4 bytes
Vertex Buffer Array | Regular 920KB | 920KB

Table 3.3: Details for some of the major data structures in Figure 3.2.

major data structures end up partitioning cache misses among themselves in
a variety of ways; the top data structure can contribute anywhere between 20

and 80% of total cache misses.

Comparing Figures 3.2.a and 3.2.b, we see that cache misses and ac-
cesses are poorly correlated. A few applications such as 179.art and 181.mcf
reveal a simple underlying organization with only a few data structures, and
misses tracking the distribution of accesses. However, the majority of appli-
cations show a well-understood pattern where a data structure receives more
accesses than another, yet accounts for fewer misses. As expected, the stack

accounts for a significant fraction of accesses without ever presenting a signif-
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‘Name ‘ Type ‘ Access Footprint‘ Object ‘

179.art

f1 layer Array Regular 625KB | 64 bytes
bus Array Regular 859KB | 8 bytes
tds Array Regular 859KB | 8 bytes
181.mcf

nodes Array Regular & irregular 7071KB | 120 bytes
arcs Array Irregular 188416KB | 64 bytes
dummy_arcs Array Irregular 3771KB | 64 bytes
163.equake

K 3D Array Regular 22399KB | 8 bytes
disp 3D Array Regular 2828KB | 8 bytes
M 3D Array Regular 943KB | 8 bytes
186.crafty

rook_attacks Array Irregular 127KB | 8 bytes
last_ones Array Irregular 64KB | 1 byte
first_ones Array Irregular 64KB 1 byte

Table 3.4: Descriptions of the major data structures in Figure 3.2 (cont’d).

icant problem to the DL1. The sole exception is 186.crafty where the stack
collectively contributes more misses than any single global data structure. As
we have seen, however, 186.crafty has a very balanced distribution, and the

stack still accounts for only 11% of DL1 misses.

3.5 Data structure details

So far we have looked at differences in miss distribution across the major
data structures in the different SPEC benchmarks while hiding details about

the individual data structures behind the anonymous names DS1, DS2 and
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‘ Name ‘ Type ‘ Access ‘ Footprint ‘ Object ‘
188.ammp
atoms Pointer | Regular & irregular | 41322KB | 2208 bytes
nodelist Array Regular 76KB | 232 bytes
atomlist Array Regular 4372KB | 232 bytes
197 .parser
Connector Various Irregular variable | 24 bytes
Disjunct Various Irregular variable | 40 bytes
table Various Irregular variable | 40 bytes
256.bzip2
block Various Irregular 900KB 1 byte
quadrant Various Irregular 1800KB 2 bytes
zptr Various Irregular 3600KB 4 bytes
300.twolf
net_array[] —netptr | Pointer Irregular 253KB | 48 bytes
tmp_rows Array Irregular 34KB 1 byte
rows Array Irregular 34KB 1 byte
sphinx
Model Array Irregular 3343KB | 168 bytes
hmms Array Irregular 3531KB | 76 bytes

Table 3.5: Descriptions of the major data structures in Figure 3.2 (cont’d).

DS3. Tables 3.3-3.5 summarize the high-level details of these data structures.

For each benchmark, we show the name of these data structures as used in

the source code, along with a brief summary of the type of the data structure

(array or recursive), whether it is predominantly accessed in a regular fashion

with spatial locality or in an irregular fashion with low spatial locality. Finally,

we provide the size of each object in these data structures and their total sizes

in the application.

The major data structures are predominantly array-based in the appli-
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cations we study. However, these data structures are often used to emulate
complex graphs using either real pointers (181.mcf:nodes, 175.vpr:rr_node)
or integers that index into other arrays (256.bzip2:quadrant, 300.twolf:rows).
The wide variety of uses indicate that data structures are often declared to
be arrays solely to simplify memory management. Most of the major data
structures are dynamically allocated on the heap. The major exceptions are
186.crafty that causes a significant fraction of misses to the global segment,
and 176.gcc which allocates most of its variables on the stack using alloca.
We now examine the wide variety of patterns by which these data structures

are accessed.

3.6 Data structure access patterns

This detailed decomposition provides a glimpse into the array of be-
haviors shown by the different data structures in a single application, ranging
from uniformly regular or irregular access across all major data structures to
a combination of access patterns for different data structures. There is no
pattern in fraction of footprint or total accesses that these data structures oc-
cupy. A data structure’s access and miss rank is often not the same, and the
distribution of misses among the major data structures varies widely across
applications. Accounting for 90% of DL1 misses requires between 2 and 25
distinct data structures for different programs. Finally, applications where
irregular accesses dominate - such as mcf - show synergistic effects between

data structures; improving multiple data structures simultaneously does sig-
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// complex termination condition not shown
loop for cell = carray[$random]:

if cell->class == -1:

continue
blkptr = barray[cell->cblock] // 8 bytes
tile = cell->tileptr // 16 bytes
term = tile->termsptr // 64 bytes

loop 3 times:
loop until term is null:
net = term->net

a = netarray[net] // 128 bytes
b = term->termptr // 64 bytes
¢ = tmp_rows [net] // 8 bytes
d = rows[net] // 8 bytes
term = term->nextterm // 64 bytes
end
end
end

Figure 3.3: Case study: Sequence of objects touched by one of the main loops
in twolf. Size of each object in comments.

nificantly better than just improving each of them in isolation. As we will
show, irregular applications often exhibit different access patterns for each
data structure in a single phase, combining spatial, pointer and indirect array-
index access. This interleaving of different types of access is a challenge for

prefetching methods that focus on just one type of access pattern [23,44].

While 179.art and 183.equake have regular access patterns, the oth-
ers interleave spatial and pointer access in complex ways. This interleaving

may happen for three reasons. First, the application may perform strided
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access through an array while dereferencing pointer fields from each element
(mcf:nodes, 188.ammp:atoms). Second, the application may perform strided
access that uses the elements of one array to index into another (bzip2:quadrant,
300.twolf:rows). Thisis a form of pointer traversal that current pointer prefetch-
ing schemes [23,76] often cannot detect. Finally, the application may ac-
cess the elements of a data structure in irregular order, but each object may
span multiple cache blocks that are accessed sequentially (ammp:nodelist,
twolf:netptr) due to large object size or irregular object alignment in the
cache. Such complex interleavings are a challenge to both spatial and pointer-

based prefetch systems.

Access-pattern case study: We now perform a more detailed analysis
to illustrate the potential for improvement from overlapping memory latency
and the challenges in converting this potential. We focus on just one of our
benchmarks - twolf - and look in its source code for insight into its behavior.
Guided by the data profile in Figure 3.2 and by the more conventional code
profile, our study yields Figure 3.3, the sequence of objects accessed in a crucial
inner loop in twolf, responsible for 55% of all DL1 misses. This loop illustrates
two interesting phenomena. First, while programs as a whole often have a
large footprint, the footprint of each loop iteration in an irregular application
fits easily in the DL1. Second, most misses in applications occur on the first

access to an object in a loop iteration.

Since different data structures can access memory with a wide variety
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of access patterns in a single program phase, it is important for the system to
optimize each according to its needs. Each loop iteration has a small footprint,
so it is feasible to prefetch future iterations without disturbing the data for the
current iteration. However, prefetching the data required for each iteration is
challenging because it includes elements from different data structures with
distinct access patterns. Taken together, these insights suggest a model where
data streams into the processor in bundles of objects that each iteration will
use. In the latter half of this dissertation we explore TwoStep, a concrete

implementation of this model.

Having used the basic capabilities of DTrack to characterize our appli-
cations, we now explore novel uses of DTrack in asking and answering sophis-

ticated questions on architecture design.

3.7 Case study: Data structure criticality

Our first case study concerns criticality of memory reference. Several
recent studies have shown that not all cache misses are equally important as
measured in the amount of latency that they expose to the processor [92].
In this context, does it make sense to simply use miss counts to select the
data structures on which to focus our attentions? To answer this question
we augment DTrack to detect cycles when no instructions are retired, and
assign responsibility for each such stall cycle to the data structure referenced
by the load or store at the head of the reorder buffer [91]. Our results show

that for our applications the data structures that cause the most misses are
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Figure 3.4: Decomposition of DL1 and L2 miss-rates by data structure. The
aggregate miss-rate for each application is denoted by a horizontal line.
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almost always also the ones responsible for the most stall cycles. There are two
exceptions to this trend. The first is in 179.art; the array tds causes only 2.1%
of all cache misses, but is responsible for 16.6% of all stall cycles. This data
structure is critical because of the following loop that accumulates a subset of

its elements:

for (tj=0;tj<numf2s;tj++) {
if ((tj == winner)&&(Y[tjl.y > 0))

tsum += tds[til [tj] * d;

This combination of data-dependent branches and computation seri-
alized by tsum causes the infrequent cache misses in this loop to almost in-
variably stall the pipeline. Our conclusion is strengthened by a study of the
source code. 179.art is a neural network simulator where learning occurs by
iteratively modifying two arrays of top-down and bottom-up weights — tds and
bus respectively. While these two arrays are largely accessed in very similar
ways, the above loop is the only major access pattern not shared with bus.
The second data structure that we observe causing a disproportionate num-
ber of stalls is the variable search in the chess-playing benchmark 186.crafty,
which is responsible for 10.5% of all stall cycles in spite of causing just 0.2% of
all cache misses. This global data structure contains the chess position being
currently analyzed, and is used to display the board on screen. With the ex-

ception of these two data structures, the correlation between miss count and
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stall cycle count shows that data-structure criticality is of limited usefulness

in the predominantly irregular programs that we study.

A related idealized experiment that provides indirect confirmation of
this result explores the effect of selectively providing different data structures
perfect single-cycle access to memory. To model this ideal behavior, we sim-
ulate cache misses to specific data structures in a single cycle, but continue
to move data in these structures through the memory hierarchy so as to not
give other data structures an unrealistically generous view of cache capacity.
We find that selectively eliminating cache misses in even the most important
data structure in an application has limited impact on performance in a ma-
jority of our applications. While there are a few exceptions, namely 188.ammp,
183.equake, it usually requires perfect memory for 2-5 major data structures
to bring performance close to ideal. This result shows that future architec-
tural and compiler enhancements will often need to optimize multiple data
structures in different ways to significantly improve overall performance in
memory-bound applications. It also shows that DTrack is indeed highlight-
ing bottlenecks in the memory system when it ranks data structures by miss

frequency.

3.8 Case study: Competition for caches

While Figures 3.2.a and 3.2.b show the distribution of accesses to the
DL1 and L2, Figures 3.4.a and 3.4.b show the corresponding miss-rates at

each level of the memory hierarchy. A common pattern in these figures is for
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Figure 3.5: Breakdown of premature evictions. Useful data is only infrequently
evicted by a different (diff) data structure.

a data structure with fewer cache misses to have a higher miss-rate. This pat-
tern occurs as the major data structures compete with each other for limited
cache capacity, so that a data structure that misses more often ends up with
a larger fraction of the cache. While this is qualitatively a desirable response,
such competition may cause suboptimal performance if different data struc-
tures repeatedly evict each other. If this behavior were found to be common, a
computer architect may consider creating split caches [31] with static mapping
policies assigning each data structure to a specific cache partition, or designing
caches to bypass data in certain regions of a program’s address space. Fig-
ure 3.5 shows how often useful data in the cache is prematurely evicted by
a different data structure as opposed to the same one. With the exception
of 256.bzip2 the majority of premature evictions are caused by conflict within

a data structure, rendering a split cache by data structure unnecessary for
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these applications. This and the previous experiment are good examples of
the ways that DTrack can help the computer architect with design decisions

where traditional tools are unable to do so.

3.9 Summary

Analyzing our applications by data structure confirms and quantifies
two nuggets of conventional wisdom that focus our attention in the rest of this

dissertation:

)

1. “Applications are not all alike.” The number of data structures that
contribute 90% of an application’s cache misses varies from 2 to 100.
Applications with similar aggregate DL1 miss-rates of 20% can exhibit
miss-rates of 2-40% for important data structures. The wide variety of

behaviors, and the fact that not all applications have hot data structures,

confirms the need for application-specific system adaptation.

2. Extremely irregular access patterns may be found in the wild. 181.mcf
performs bounded depth-first-search over sub-trees; 300.twolf and 256.bzip2
perform lots of indirect array access; 188.ammp interleaves random pointer
traversals with spatial access over each 2KB object. As a result, cache
misses largely occur on the first access to an object in a loop iteration,

and predicting the object each iteration will access can be difficult.

The combination of these insights leads us to a prefetch system biased towards

complex access patterns. Since the footprint of any given loop iteration is
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tiny relative to cache capacity, we focus on orchestration at the loop iteration

granularity.

In addition to these insights, DTrack influences the rest of this disserta-
tion in two methodological ways. First, it provides valuable infrastructure for
debugging optimizations as we describe later. Second, our analysis of critical
loads in Section 3.7 suggests a metric to evaluate optimizations in schedul-
ing - reduction in stall cycles. Scheduling does not eliminate cache misses for
irregular programs without much spatial locality. Thus, cache miss counts
and rates should remain unchanged in the presence of prefetching. Measuring
reduction in stall cycles provides a solution to this problem, quantifying the
latency tolerance of a prefetching approach. One additional wrinkle is that
critical paths can be easily shifted by improvements or changes to the applica-
tion [28,92]. This suggests refining our metric to stall cycle reduction by data
structure, which gives us a richer picture of how well a technique addresses
the perceived problem, and also of how much speedup we obtain before hitting

the next bottleneck.

In the next chapter, we extend these insights to phase behavior, again
using novel methodology to quantify phase variation in access patterns, and
providing key infrastructure for selecting good simulation intervals from a high-
level perspective. Our characterization then drives the design of TwoStep,
which provides a parsimonious basis set of mechanisms to give each major
loop in an application a carefully tuned prefetching strategy, specifying what

to prefetch, when to prefetch it, and where to prefetch it to.
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Chapter 4

Phase analysis

This chapter extends our high-level characterization of applications by
decomposing application behavior by data structure and global program phase,
and by translating this decomposition into a summary of major application
access patterns that is used in the design of TwoStep in the next chapter. In
the process, we make two contributions to the state of the art in phase analysis

methodology.

Phase behavior has received much attention in recent times [6,52, 68,
82], with the eventual goal of designing system hardware/software to adapt to
changing application requirements. Studies using Basic Block Vectors (BBVs)
explore their uses in clustering phases and detecting phase transitions in an
offline [83,84] and online [86] setting. One alternative to BBVs is the use of
program counter or Extended Instruction Pointer Vectors (EIPVs) [6]. An-
other alternative consists of more high-level metrics based on code structure,
such as register use vectors or loop vectors [52]. All these studies share a
common workflow. They generate the variation of some metric (such as cache
miss-rate) over time, aggregated in some sampling period. They then try to

identify regions with ‘similar’ behavior and the boundaries between such re-
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gions. All these studies suffer from two major drawbacks:

e They operate on aggregate phase data for detecting phase behavior.
While this is sufficient for some applications, we show in Section 4.1

that it can hide details of memory behavior.

e They select their sampling period in an ad hoc fashion and use a sin-
gle sampling period across all their applications to automatically detect
phase boundaries [82]. Nagpurkar et al. recently showed that the notion
of phase boundaries is not absolute, and that the phase boundaries one
picks and the granularity at which to view them depend on their even-
tual purpose [68]. This result suggests that automatic phase-detection
algorithms are deeply influenced by the sampling period at which data

is provided to them.

Our methodology addresses both drawbacks. In Section 4.1 we use DTrack
to measure phase behavior on a data structure basis. In Sections 4.2-4.4 we
demonstrate a new technique based on spectral analysis that automates the
process of selecting a good sampling period for phase data. Rather than pick
an ad hoc sampling period and then automatically determine phase boundaries
at that granularity, we automate sampling period selection to yield a phase

graph where global phase behavior is more readily apparent.

Applying these two methodological improvements, we quantify the phase

behavior for each application at an application-specific sampling period in Sec-
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Figure 4.1: Just tracking total misses can miss interesting effects. DL1 cache
misses in aggregate and by data structure in 188.ammp.

tion 4.7. Our results show that data structures have very different access pat-
terns in different phases; however all data structures in an application largely
share the same phase boundaries. We use this phase data in Section 4.8 to de-
termine the dominant access patterns in each application, a high-level insight
that is used to drive the design of the TwoStep prefetching system in the rest

of the dissertation.

4.1 Analyzing phase behavior by data structure

Studying phase behavior by data structure is important; looking at the
time-varying behavior of aggregate misses alone can be misleading and hide
important data structure interactions. Figure 4.1 illustrates this: the data
structures atoms and nodelist in 188.ammp are consistently anti-correlated.
As one increases the other decreases and vice versa. Studying just the curve
for total cache misses would miss this interaction and also underestimate the

degree to which the application’s behavior is changing under the surface. The
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reduced amplitude changes also make automatic phase detection more difficult,

as we explore later in this chapter.

This pattern is not uncommon; six of the nine applications we study
exhibit significant differences in data structure miss distribution in different
phases. Therefore in the rest of the results in this chapter we use our DTrack
toolchain to generate time-varying miss-count or miss-rate data for individual

data structures rather than for the aggregate application as a whole.

4.2 Sampling period selection: Overview

Our second methodological innovation is a technique to view time-
varying behavior at a sampling period that highlights global phase transitions.
Our technique is based on two insights from spectral analysis: that increasing
sampling period is a process of aggregation that has a damping effect, and that
global phase behavior consists of emphasizing rare (low-frequency) transitions
over common (high-frequency) ones. Figure 4.2 shows the temporal variation
in DL1 miss count for a single data structure in 183.equake by aggregating
miss count at three different sampling periods: one sample every 10 million
cycles, one sample every 180 million cycles, and one sample every 500 million
cycles. This figure illustrates a general trade-off for phase analysis, either of-
fline or online. Offline, overly frequent sampling puts too many data points
on a graph, making global trends harder to detect. Online, frequent sampling
increases overheads. Conversely, increasing sampling period too much reduces

the information content to close to that of aggregate DL1 misses, defeating the
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Figure 4.2: Selecting a sampling period, step 1: Phase behavior curves corre-
sponding to a stream (183.equake) at different sampling periods. The challenge
is to select a sampling period that is neither too noisy (a) nor over-damped

(c), but just right (b).
purpose of phase analysis, whether offline or online. We would like to avoid

both classes of degenerate data collection.

We begin our description of this process by outlining the various stages
involved in our offline methodology, and by introducing some terminology in
the process. First, we generate a stream of data-structure-specific data using
DTrack at a low sampling period of one million cycles. To model larger sam-
pling periods we aggregate the points in this stream to generate various curves
such as the ones shown in Figure 4.2. We then use a simple volatility metric —
described in the next section — to compute the volatility of these curves, and
combine the volatilities at different sampling periods to generate a volatility

profile for the stream. This process is graphically depicted in Figures 4.2-4.8.
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Volatility profiles provide a concise summary of the phase behavior of an ap-
plication at different granularities; we show that they suggest good sampling
periods in a straightforward manner: low granularities with low volatilities.
We now describe each stage in detail, dwelling on the intuitions behind our

design decisions and the alternatives we considered.

4.3 Sampling period selection: The volatility metric

Phase boundaries in a curve are dramatic changes in amplitude over
time. In selecting the right granularity to detect phase boundaries we would
like to highlight only the most important such dramatic changes. Thus, the
volatility of a curve should answer the question: what is the largest magnitude
of amplitude change commonly seen in the curve? Let us begin by answering
this question for the degenerate case: with a curve containing just two points.
We denote the curve consisting of the values X;, X5 in adjacent time steps as

(X1, Xs].

Volatility at a point: The curve [1.1,1.2] has much lower volatility than
the curve [1,10]. This intuition is adequately captured by our conventional
notion of relative change, or growth. A variable that doubles between adja-
cent sampling intervals demonstrates higher volatility than one that grows or
shrinks by 10%. We formalize this notion into the following volatility metric
at a given time step. Given a stream [Xi, X, X3...], the volatility at each

time step is defined as:
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Curve Point volatilities
1,1,1,1,1] {0,0,0,0}
,1,1,1,2] {0,0,0,0.5}
,1,2,1] {0.5,0.5,0.5,0.5}
0,1,10,1] | {0.9,0.9,0.9,0.9}

Table 4.1: Computing the point volatilities of some simple example curves.

o abS(Xt — thl)
I = max (X, Xy 1)

(4.1)

g¢ is similar to the conventional notion of ‘growth’, except that it is
symmetric: g; is 0.5 whether X; has doubled (“grown by 100%”) or halved
(“shrunk by 50%”) since the last time step. This symmetry ensures that the
volatility between two values is the same regardless of which comes first. By
this definition, the curve [1,10] has a volatility of 0.9, while the curve [1,1.2]
has a volatility of 0.1. Even more trivially, the curve [1, 1] has a volatility of

0.

Summarizing the volatility of a curve: Given the above formulation
for the volatility of a 2-point curve, we can now view a curve with n points
(X1, X2, X3...] as a set of 2-point curves {[X1, X3], [X2, X3] ...}, and we can
now compute the point volatility for each of these. Table 4.1 shows the point
volatilities of some simple example curves. Notice that each point volatility lies
in the open interval (0,1), that equal adjacent values yield a point volatility
of 0, and that rapid increases and decreases in value cause high volatilities.

Figure 4.3 illustrates this process for a curve with more points, showing the
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Figure 4.3: Selecting a sampling period, step 2: Corresponding point volatili-
ties for each point in the graphs of Figure 4.2.

corresponding point volatilities g; for the curves in Figure 4.2.

Summarizing the volatility of these 2-point curves is an exercise in
statistics, and there are many candidate ways to do so, starting with simple
ones such as mean, median and mode. To select a good method of sum-
marization, recall that the goal is to determine the largest volatility that is
commonly seen in the curve. This requirement can be broken down into two
sub-requirements: first, that all commonly occurring volatilities be consid-
ered in our aggregation; and second, that rare volatilities not be considered.
Figure 4.4 provides an alternative way to formulate our requirement: curves
with similar magnitudes of high-frequency noise must have the same volatil-
ity, regardless of their low-frequency phase behavior. Let us consider the three
simplest alternatives for aggregating point volatilities in the light of these re-

quirements:
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Figure 4.4: Property of a good volatility metric: both these curves should
have the same volatility, as an indication of how much noise is added by the
common transitions, while ignoring the rare transitions.

e Mean. The mean of a set of values is sensitive to infrequent outliers.
This violates our second constraint. It can also cause a set of high point
volatilities to be ‘smeared down’ into a lower value in the aggregate. For
instance, the set of point volatilities {0,0,0.5,0.5} translates to an aver-
age of 0.25 which underestimates the common volatility of 0.5, violating

our first constraint.

e Median. Consider the set of point volatilities {0,0,0.25,0.5,0.5}. The

median 0.25 violates our first constraint: 0.5 is larger and common.

e Mode. The median is completely unrelated to our requirements and dra-
matically incorrect for sets with balanced frequencies: {0,0,0,0.9,0.9,0.5}

would yield 0, violating both of our constraints.

Thus, none of these are suitable. However, this quick thought experiment

yields one major insight: that we need to fix precisely what we mean by ‘com-
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Figure 4.5: Selecting a sampling period, step 3: Sort the point volatilities for
each graph in Figure 4.3. The volatility of the curve is defined as the point
volatility at the 90th percentile.
mon’ or high-frequency. While mean and mode entirely fail to capture our
requirements, the problem with using the median is relatively minor, and is
corrected by increasing the percentile at which to place the maximum bound.
Thus, selecting the median or 50th percentile could miss a higher point volatil-
ity that occurs nearly 50% of the time, selecting the 70th percentile could miss
a higher point volatility that occurs at most 30% of the time, and so on. We
empirically find that selecting the 90th percentile, which excludes 10% of the
largest point volatilities, gives us a good measure of the largest and common-
est transitions in a curve — the high-frequency noise. Thus, we generate the
volatility of a curve from the set of its point volatilities by sorting the point
volatilities in ascending order and reading off the point volatility occurring
at the 90th percentile. Figure 4.5 illustrates this process for our running ex-

ample curves of Figure 4.3. In each graph, the dotted line denotes the 90th
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Figure 4.6: The volatility profile for the data structure inbuf in 164.gzip,
showing volatilities for curves aggregating from 1 to 500 million cycles worth
of DL1 cache misses together.

percentile and the point volatility at this percentile is treated as the volatility

of the entire curve.

4.4 Sampling period selection: Volatility profiles

We have thus far determined a suitable volatility metric quantifying
the amount of high-frequency noise in a curve. The next step is to use this
volatility metric to determine a suitable sampling period for a given stream.
To do so, we first compute the set of curves corresponding to the input stream
when aggregated at different sampling periods. For each curve we determine
the volatility as described above. Plotting the volatility of the curve against
the sampling period at which it was gathered yields the wvolatility profile for

the underlying stream.

Figure 4.6 shows one such volatility profile. Putting together our
methodology in every stage so far, this graph is generated as follows. We

configure DTrack to emit miss-count statistics by data structure every 1 mil-
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lion cycles and run 164.gzip on top of it. This experiment yields us a stream of
data points corresponding to the DL1 miss count for inbuf in every million-
cycle interval of execution. Aggregating these data points in different ways
yields curves for the DL1 miss counts every 2 million cycles, every 3 million
cycles, and so on. We compute the volatility for every such curve from sam-
pling period of 1 million to 500 million cycles, and plot the resultant volatilities
against sampling period to yield the graph of Figure 4.6. The points on this
graph with relatively low volatilities represent sampling periods where global
phase behavior is more salient and easily discerned. The next two sections
now elaborate on the process of selecting a good sampling period given the

different types of volatility profiles.

4.5 Results: Volatility profiles

To generate volatility profiles for our applications, we apply the pro-
cedure from the previous section on streams for DL1 and L2 miss count and
miss-rate of the most frequently missing data structures as generated by the
methodology outlined in Section 3.3. Across the applications we study, we find
that the DL1 and L2 miss counts for different data structures largely exhibit
volatility profiles with the same trends, and with minima at the same sampling
periods. Therefore, we focus on the DL1 miss-count stream for a single major
data structure in each of our applications. The left-hand graphs in Figures 4.7

and 4.8 summarize the volatility profiles for these data structures.

The volatility profiles in Figures 4.7 and 4.8 may be classified into
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three categories. First, 175.vpr, 179.art, 181.mcf, and 300.twolf show consis-
tently low profiles, so that an arbitrary selection is likely to highlight global
phase behavior. Second, 177.mesa, 183.equake, and 256.bzip2 exhibit mono-
tonically decreasing volatility profiles as a result of the natural damping effects
of aggregation with increasing sampling period. In these cases we empirically
select the smallest sampling period with a volatility of less than 0.2. The
third and final category consists of 164.gzip and 188.ammp, applications where
the volatility profile is more complex. We explain these volatility profiles in
greater detail in the next section, and describe our more ad hoc methodology

to determine good sampling periods for these applications.

4.6 Explaining and handling non-monotonic volatility

profiles

The variety of volatility profiles in Figures 4.7 and 4.8 bears some
scrutiny. We began this chapter with the assumption that the damping effect
of aggregation would cause volatility to monotonically drop with increasing
sampling period. However, our results show that this is not always the case;
164.gzip and 188.ammp have particularly complex, non-monotonic volatility
profiles. These phenomena are explained by the discrete set of sampling pe-
riods available to us, and the interaction of these discrete points with the

intrinsic periodicity of an application.

At a high level an application consists of nests of loops that access dif-

ferent data structures in different ways. The access pattern of a given data

62



a. inbuf in 164.gzip

50 million cycles

. 21
2 E
g 8
S 3
E
0 ) ] 0 J
Sampling period (millions) 500 8 9o Time (billions of cycles) 35
b. rr_node in 175.vpr
= 500 million cycles
1 -5 4.5
z B
g 8
S 3
E
0 ! 3 o )
Sampling period (millions) 500 o 0 Time (billions of cycles) 70
c. Depth Buffer in 177.mesa
o) 230 million cycles
1 2800
3
z g
g e
> 4
0 ) E 0 )
Sampling period (millions) 500 5‘ 0 Time (billions of cycles) 36
d. bus in 179.art
o) 140 million cycles
1 c 800
<
E
g g
\,\/—\—‘ 9
IS
0 - 0 )
0 Sampling period (millions) 500 5‘ 0 Time (billions of cycles) 98
e. nodes in 181.mcf
= 40 million cycles
1 .5 25
z E
g ]
s 3
PN E
0 g j 0 J
0 Sampling period (millions) 500 o 0 200

Time (billions of cycles)

Figure 4.7: Volatility profiles of some major data structures in our applica-
tions (left), and the corresponding phase behavior (right) at one low-volatility
sampling period in the profile (specified above each right-hand graph).
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Figure 4.8: Volatility profiles of some major data structures in our applica-
tions (left), and the corresponding phase behavior (right) at one low-volatility
sampling period in the profile (specified above each right-hand graph).
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Figure 4.9: The phase behavior of 177.mesa at 10 million cycles. Compare
with Figure 4.7c.

structure in a given loop may contribute a component with a certain approx-
imate period to the phase behavior of the data structure. Combining all the
interacting periodic components corresponding to a data structure yields the
overall phase behavior of that data structure. If all the components for a data
structure have relatively low time periods and high frequencies, we expect
aggregation at high sampling periods to smooth out their disparate periodic
effects. If a stream contains a component with a substantial time period, how-
ever, we observe a steeply oscillating volatility profile, with troughs at factors

and multiples of that time period.

Such streams with coarse-grained periods make it more difficult to se-
lect a sampling period, requiring volatility measurements at a large number
of values in order to find good candidates. For example, if a stream is domi-
nated by a period of 7 million cycles, taking measurements at sampling period
increments of 10-million could fail to identify a good sampling period. By

the time we find low volatility (at a sampling period of 70 million cycles) we
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may have damped out all phase behavior. Understanding such interactions
in application phase behavior is a challenge for future research. In the con-
text of this study, finding a low-volatility sampling period required gradually
refining volatility measurements for 177.mesa and 188.ammp. As a concrete
example of this, Figure 4.9 shows the phase behavior seen for Depth Buffer
in 177.mesa at a sampling rate of 10 million cycles. Comparing this curve with
that in Figure 4.7c shows how widely dissimilar different a stream can look at
different sampling periods, and how selecting a bad sampling period can oc-
clude gradual periodic patterns. The global phase behavior seen in Figure 4.7¢
is only observable in a narrow window of sampling periods, from 200 to 300
million cycles. Offline phase detection techniques that fail to use sampling
periods in this range would show either too many phase transitions or too few,
occluding the more gradual phase behavior in either case. Similarly, online
phase detection techniques that fail to adjust the sampling period would be

unable to adapt effectively to the changing requirements of this application.

Summary: The goal of the last 4 sections has been to come up with a rig-
orous methodology to select a good sampling period at which to view and
operate upon graphs of temporal behavior. Our proposed methodology, based
on a volatility metric, fulfills this purpose by concisely summarizing the merit
of every point in the state space of possible sampling periods. The next step, of
selecting a good sampling period, is more ad hoc. The lack of full automation

is a result of one major factor: efficiency considerations force us to maintain
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a lower bound on the granularity at which we can vary sampling period. In-
teractions between this sampling period and intrinsic periodicities of different
streams force us to manually inspect phase graphs for some applications at
a few low-volatility sampling periods before settling on the period with the
cleanest expression of global phase behavior. Our general heuristic, though,
is to select the lowest possible sampling period with a low enough volatility.

This corresponds to points to the bottom and left in our volatility profiles.

4.7 Results: Phase behavior at a good sampling period

Having described in detail the procedure for selecting a good sampling
period for each of our applications, we can now study the phase behavior of
each application at this application-specific sampling period. The right-hand
side graphs in Figure 4.7 and 4.8 summarize the phase behavior of the DL1
miss count for one major data structure in each of our applications. Each of
these graphs is labelled with its sampling period of N cycles as selected from
the volatility profile on the left, and plots DL1 miss-count for a single data

structure per N cycles.

Our results can be broken down into three categories. First, appli-
cations with no phase behavior past initialization: 179.art, 183.equake, and
300.twolf. Second, those with simple phase behavior between a well defined set
of phases with easily-discerned boundaries: 164.gzip, 181.mcf and 188.ammp.
Third, more complex curves with poorly defined phases and fuzzy phase bound-

aries: 175.vpr, 177.mesa and 256.bzip2.
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Categories 2 and 3 both contain applications with phase inversions,
where a different data structure contributes the most cache misses in each
phase. Figure 4.10 shows the phase behavior of the major data structures in
those of our applications with such inversions — 164.gzip, 175.vpr and 181.mcf.
We use this data on phase transitions and inversions in these applications to
distill each of our applications down to a concise description of their major

access patterns.

4.8 Results: Translating phase behavior into access pat-

terns

The phase behavior of an application can be used for a variety of pur-
poses as detailed in the next section. In this disseration we use it to help drive
the design of the TwoStep prefetch system in the second half of this disser-
taion. Combining our insights from DTrack with code profiles allows us to
identify the different access patterns in each phase, and the roles of different
data structures where inversions occur. By manually correlating code profiles,
the data profiles generated by DTrack, and the phase behavior data from the
previous section, we are able to concisely summarize the major access patterns

in each of our applications.

e 164 .gzip consists of alternating phases that read a section of input data
into a buffer, and compress the contents of the buffer. Both phases have

sequential access patterns with lots of spatial locality.
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e 175.vpr consists of two data structures: a heap of objects, each containing
a rr_node. The heap is accessed in a halving or doubling stride, while
rr_nodes are more irregular. The interleaving of accesses to the two is

highly data driven.

e 179.art consists of two 2-D arrays: bus and tds. Both are accessed

simultaneously and sequentially.

e 181.mcf consists of alternating phases of depth-first-search over a sub-

tree of nodes, and heap sort over a heap of arcs.
e 183.equake consists of regular sequential access over several 3-D arrays.

e 188.ammp consists of a linked list traversal through atomlist, inter-
spersed with a pass of much more irregular access every 12-15 iterations

in order to update 200 pointers to spatially neighboring atoms.

e 256.bzip2 performs irregular indirect array accesses over three distinct
arrays — zptr, block, and quadrant — using indices in one array to

access another.

e 300.twolf contains a single phase with a complex access pattern summa-
rized earlier in Figure 1.2, interleaving spatial, pointer and indirect array

aCCess.

These access patterns drive the design of several aspects of the TwoStep

prefetch system in the second half of this dissertation. These aspects include
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the basic insight that such a wide variety of techniques requires compiler-
driven policies to determine what to prefetch, the design of the ISA for the
TwoStep prefetch controller, a quantitative analysis of the timing constraints
on dependent prefetches to determine that the controller must be placed at
the L2, and the need for auxiliary structures and efficient flow control in order
to perform prefetching into the DL1. We explain these considerations in more

detail in the next chapter.

4.9 Summary

As computers have become cheaper and more accessible the trend in
the last 30 years has been for applications to grow more diverse (with new cat-
egories like streaming media and personal productivity), more complex (word
processors check grammar and also perform speech recognition and synthesis)
and more memory-intensive. These trends are likely to continue in future: the
number of applications running concurrently on a system, the variety of appli-
cations, and the variety of phase behaviors in an application are all likely to
increase. In the face of these trends, one-size-fits-all heuristics are insufficient,

and adaptive approaches increase in importance.

Our response to these trends has been a detailed characterization of
nine applications with a wide variety of access patterns, first decomposing their
aggregate memory hierarchy behavior by data structure in the previous chap-
ter, and then further decomposing these results by global program-execution

phase. Our detailed characterization yields a concise summary of the major

71



access patterns that we use to drive the design of TwoStep in the rest of this

dissertation.

While we focus on a single application for this detailed characteriza-
tion, our novel methodology methodology can be applied to systems research
in a variety of ways. In the past, identifying phase behavior has been useful in
several areas, such as adaptively varying processor issue width or cache capac-
ity [6,86]. Our data shows that augmenting these past online approaches with
ways to adaptively tune the granularity of phase transition decisions will in-
crease their effectiveness. Tuning phase granularity online is an open problem
that will need to be addressed in future. In offline phase analysis, combin-
ing prior implementations with data structure decomposition and the correct
sampling period can provide a more rigorous framework for phase analysis and

more sophisticated insight into many areas of application behavior.
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Chapter 5

TwoStep: Precomputation-based prefetching
with lightweight throttling

Our study of data structures and phase behavior in different applica-
tions shows the wide variety of access patterns modern systems have to deal
with. The second half of this dissertation describes and evaluates our approach
to application-driven prefetching, a precise set of mechanisms that allow indi-
vidual applications to be optimized at runtime according to their needs and
access patterns. Our prefetch system is called TwoStep. TwoStep combines
compiler-generated precomputation threads, a prefetch controller in the L2
that runs ahead of the main program, and lightweight mechanisms for flow-
control and throttling. It is designed to work in the presence of truly complex
access patterns interleaving pointer and spatial access that prior approaches
have struggled with. In the rest of this chapter, we describe the challenges
presented by such applications to previous approaches, describe the design
decisions that led to TwoStep, and provide initial results over a set of hand-
crafted kernels for four of our applications in order to show the soundness of

the basic microarchitecture design.
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5.1 Drawbacks in past approaches

A variety of mechanisms have been used in prior prefetching studies.
We now survey the prior work on prefetching in terms of its constituent mech-
anisms separated along four directions: where a prefetch originates, what to
prefetch, when to prefetch it, and where to prefetch to. The process of the

survey recapitulates the rationales for our design decisions for TwoStep.

Prefetch origin: There are three broad choices in deciding where prefetches
should originate: in the main processor as part of the application program [12,
41,56,59], in the main processor as a separate thread [11,66,93], or in the
lowest level of the cache hierarchy facing main memory [47]. While the latter
requires more overhead and book-keeping to orchestrate, it has an advantage
that DTrack tells us is crucial: it reduces the latency between dependent
prefetches. Since prefetches have to go only one way from L2 to processor,
both baseline latency and queuing delay due to bandwidth constraints are

minimized. The cost is additional hardware complexity.

What to prefetch: There are 4 broad choices in deciding what to prefetch:
addresses spatially close to recent addresses [12, 55, 59|, recently-fetched cache-
lines for pointers [23], pattern detection tables (stride or address-correlation) in
hardware [40,41], and finally compiler-generated addresses [56,59]. Of these,
the first three are tuned to narrow varieties of access-patterns; responding to

arbitrarily complex access patterns requires compiler intervention. The cost is
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compiler complexity. Also, compiler-based prefetch schemes in the past have

often struggled with the next decision of prefetch timing.

When to prefetch: There are two opposing constraints on timing prefetches:
prefetches need to occur early enough relative to use to overlap their entire
latency. They also need to occur close enough to the use not to evict more
proximally-useful data and cause cache pollution. Past approaches on tim-
ing prefetches have largely been constrained by the design decision of what
to prefetch: compiler-based approaches [56,59] have relied on the compiler
to time prefetches as well, resulting in brittle strategies that cannot adapt
to changing runtime requirements; hardware-based approaches [40,41], have
struggled to issue prefetches early enough since the microarchitecture’s view is
more local than a compiler’s. There has been recent work on issuing systems
of prefetches [55], often under compiler guidance [97,99] rather than single
prefetches at a time in order to increase available slack. This approach is the
most promising among the alternatives. However, the challenge is to meet
conflicting timing constraints without running into either the drawbacks of
software approaches (rigid strategies) or hardware ones (overhead in detect-
ing and avoiding pollution). The prioritization decision between independent

sequences of prefetches [22,102] can also cause design complexity.

Where to prefetch to: This decision presents 3 major options: prefetch to

the L2, prefetch to the L1 or prefetch to an auxiliary structure connected to the
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caches. Prefetching to the L1 is a challenge because its small capacities increase
the risk of pollution. As a result, most recent approaches have prefetched only
to L2. Spatial prefetch schemes have explored prefetching to an auxiliary
structure called a stream buffer [42,85] in order to avoid L1 pollution, but
at the cost of a slightly increased latency somewhere along the critical path
of cache accesses. Stream buffers impose ordering constraints on the use of
prefetches, however; as a result they have not been used with success for

irregular applications.

This analysis highlights the issues in prefetching for highly irregular
access patterns. We would like to have the compiler select what to prefetch but
decouple the decision from prefetch timing. We would like to issue prefetches
far in advance from the L2 but allow the processor to control the prefetch
thread to avoid pollution. We would like to prefetch to L1 but avoid pollution.
Our key insight is that decoupling each prefetch into 2 stages solves all these
problems with low cost in design complexity or overhead. We now describe

our aptly-named TwoStep prefetch scheme.

5.2 An overview of TwoStep

Figure 5.1 shows a high-level schematic for our TwoStep microarchitec-
ture, highlighting the major components of the prefetch system - the prefetch
controller in the L2, the FIFO between L2 and DL1, and ISA enhancements
to orchestrate data transfer between FIFO and DL1. TwoStep performs long-

range prefetching in the L2 under the direction of a compiler-generated prefetch
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Figure 5.1: The TwoStep prefetching system

program, and short-range prefetching to orchestrate the transfer of data into
the DL1 without polluting it. The L2 prefetch controller is a simple single-issue
in-order processor. A prefetch program is loaded into the prefetch controller
when its corresponding main program is loaded into the processor. Prefetching
is triggered when the main program reaches specific program phases. At the
start of a program phase for which the compiler decided to enable prefetching,
compiler-inserted code in the main program initializes various registers in the
prefetch controller, including the prefetch PC, and signals the controller to
begin prefetching. At this point the prefetch controller begins executing its
loaded program. Load instruction types in the prefetch program (the most
frequent category) cause the object (with a statically well-defined size) in the
result register to be prefetched. When such an address is not available in the

L2, it is requested from main memory and the prefetch program stalls until
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it returns. When it returns, the prefetch controller pushes the object (a fixed
number of cache-lines) onto the FIFO between L2 and DL1 and then repeats
the process for the next instruction in the prefetch program. Objects pushed
to the FIFO wait to reach the head of the queue. Pull and load instructions in
the main program then respectively transfer the object to the DL1 and start
using it. Data in the FIFO is virtually tagged, and the prefetch controller has
access to a private TLB. TLB misses cause the prefetch program to stall just

like any other exceptional condition.

Rationale: This design provides a better solution to several issues that are
challenging to previous studies. The prefetch program allows the compiler to
efficiently encode what must be prefetched, and to handle arbitrarily com-
plex combinations of interleaved spatial prefetching and pointer-chasing. The
compiler encodes this information without constraining hardware on when
to initiate prefetches, allowing hardware to manage resources better and is-
sue prefetches in a timely manner when resources are free. In practice, the
prefetch program is able to run far ahead of the main program. Running ahead
is feasible because there is no possibility of cache pollution, and the prefetch
program is throttled on a simple condition - when the FIFO fills up. The final
transfer between FIFO and DL1 is initiated by pull instructions at the start of
loop iterations that specify only how many cache-lines to transfer, not what it
must contain. In the common case, this allows the footprint of each iteration

to be brought into the DL1 ahead of its use. In the worst case, pull instruc-
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tions avoid deadlock when the FIFO contains useless data, while limiting the
pollution in the cache to a strict upper bound. Prioritization is no longer an

issue since the compiler explicitly sequences prefetches.

5.3 The prefetch controller

We now provide a detailed description of the TwoStep microarchitec-
ture in this and the next section, enumerating alternatives and design decisions
at important points. We designed TwoStep to be simple, with an orthogonal
and parsimonious ISA, while making the compiler’s code generation task easier
and matching the ISA to common patterns seen in our characterization using

DTrack.

We begin with the L2 prefetch controller, the point of origin of each
prefetch in TwoStep. The prefetch controller receives two sets of inputs: a
prefetch program divided into kernels, and initial register values before running
a specified kernel. The prefetch program is loaded into the instruction store on
application startup, while register initialization is performed under processor
control at the start of different program phases. In the rest of this section we
assume both program and register values have been initialized, and describe
the workflow for a single instruction in the prefetch program. Initialization

conditions are specified in the next section.

Table 5.1 describes the ISA of the TwoStep prefetch controller. The
instructions in TwoStep’s ISA operate on 32 word-length integer registers, one

PC register and immediate operands. TwoStep’s workhorse instructions are

79



Fmt ‘ Instruction

‘ Semantics

arith €
{ add, mul, mod, and, or}

o€ {+%%&|}

I arith Ry, R,,0f fset,size | Rq+ Ry o of fset * 250%¢

1 arithp Ry, R,,of fset,size | Rq + R, o of fset x 25%¢; prefetchRy

II arith2 Ry, R, Ry, size Ry <+ R, o R, x 25%¢

II arith2p Ry, R,, Ry, size Ry <+ R, o R, % 2°%¢; prefetchRy

1 load Ry, R,,of fset,size | Rq + R, + of fset x 25¢; prefetchRy;
Rd <— [Rd] ‘

1 loadp Ry, R, of fset,size | Ry <— R+ of fset x 2°%¢; prefetchRy;
Ry < [Ry4]; prefetchRy

II load2 Ry, Ry, Ry, size Ry <+ R, + Ry x 25*¢; prefetchRy;
Rd — [Rd] ‘

II load2p Ry, Rs, Ry, size Ry < Rs + Ry % 2°%*¢; prefetchRyg;
R, <+ [Ry]; prefetchRy

IIT | jeq target, Rg, of fset if R, == of fset: Rpc = target

IV | jeq2 target, R,, R; if R, == R;: Rpc = target

IIT | jit target, R, of fset if R, < of fset: Rpc = target

IV | jIit2 target, R, R; if R < Ry: Rpc = target

IIT | jle target, R;,of fset if Ry, <=of fset: Rpc = target

IV | jle2 target, R,, R; if R, <= R;: Rpc = target

‘ next

| + + FIFO tail

Instruction formats (24-bit instructions):

I | Opcode (5) | Ry (5) | Rs (5) | size (3) offset (6)
IT | Opcode (5) | Rq (5) | Rs (5) | size (3) R; (5)
ITI | Opcode (5) | Rs (5) target (8) offset (6)
IV | Opcode (5) | R, (5) target (8) R; (5)
Field details:
Field Width (bits) | Encoding Addressing mode
R, Riy, Ry | 5 Unsigned Register
of fset 6 2’s complement | Immediate
size 3 2’s complement | Immediate
] - Unsigned Indirect

Table 5.1: The ISA for TwoStep’s prefetch controller.
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C statement TwoStep equivalent

++1i; add Ri,Ri,l,O
c =a+ b; add2 R., R,, Ry, 0
c = &Arr[al; add2 R., Rayp, Ry, 0

int Arr[]; ¢ = Arr[al; | load2 R., Ray, R4,2 //2° == sizeof(int)
int* Arr[]; c = Arr[al; | load2p R., Rwr, Rq, 2

c = &a — fld; addp R., R,, of fset(fld),0
c =a — fld; load R, Ry, of fset(fld),0
Obj* ¢c; ¢ = a — fld; loadp R., R,,of fset(fld),0

Table 5.2: Some common access patterns translated into the TwoStep ISA.

of two major varieties: arithmetic and load instructions. Both have a uniform

format:

Op Ry, R, f,size (5.1)

Each instruction scales f by an object-size factor 2°*¢, combines the
result with register R,, and stores the result in register R;. f may be either
a second register (R;) or a signed immediate operand (offset). There are five
varieties of arithmetic operations: arithmetic addition, multiplication, and
remainder; and logical conjunction and disjunction. Subtraction is provided
using negative offsets, while logical left- and right-shifts are provided using

positive and negative size exponents, respectively.

Accessing main memory is the fundamental goal of TwoStep, and the
ISA provides two major ways to prefetch data into the L2. The first is the load
instructions, which act like the corresponding add instruction using indirect

addressing. Indirect addressing is implemented by issuing an L2 cache-line-
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// R1l: root
// R2: value being searched.

loop:
jeq continue, R1, O
load R3, R1, node_value, 0 // R3 = Ri->value;
jeq continue, R3, R2
jlt else, R3, R2
then:
load R1, R1, node_left, 0 // Rl = Rl->left;
jeq loop, R1, R1 // unconditional
else:
load R1, R1, node_right, 0 // Rl = Rl->right;
jeq loop, R1, R1
continue:

Figure 5.2: A simple TwoStep kernel to perform binary search.

aligned prefetch to main memory if necessary, waiting for the prefetch to re-
turn, and then performing a simple copy from L2 into R4. Second, arithmetic
and load instructions both have variants — denoted by the p suffix — that
prefetch the contents of Ry from main memory after computing Ry. These two
techniques are combined in the loadp instruction, which performs a simple add,
prefetches Ry, performs the recursive indirect access Ry = [Ry|, and prefetches
R4 again. These steps are performed serially, and each step waits for prefetches
to finish executing before proceeding to the next step. All prefetches are per-
formed on virtual addresses; in our experiments, we use a physically indexed
physically tagged (PIPT) L2 cache, and we therefore provide the prefetch con-
troller with a TLB for translation. TwoStep prefetches are treated just like

demand fetches because of their near-perfect accuracy — they are not pri-
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oritized differently, and they are fetched into the most recently used (MRU)
way of the L2. Table 5.2 summarizes the different varieties of prefetches pos-
sible in the TwoStep ISA by mapping them to high-level C access patterns.
For example, addp corresponds to strided prefetch, while loadp corresponds to
pointer prefetch. The difference between add/load and addp/loadp is primarily
whether the destination opcode is a pointer that is dereferenced in the current

kernel.

In addition to arithmetic and load instructions, the TwoStep ISA con-
tains two additional instructions: control instructions and the novel next in-
struction. The control instructions are straightforward, consisting of two va-
rieties of conditional branch to target depending on comparison between the
two operands. The next instruction is used for flow control and explained in
the next section. Figure 5.2 shows a simple prefetch program with a single

kernel — to perform binary search.

5.4 Flow control: pull and next

The prefetch controller in the previous section prefetches only to L2 and
can run arbitrarily far ahead of the main program on the processor, increasing
the risk of cache pollution. In order to address both drawbacks, we add a FIFO
structure between DL1 and L2, with a width of one DL1 cache-line. Every
instruction in the TwoStep ISA knows how many cache-lines it will prefetch
and only begins execution if there is room for an equivalent number of DL1

cache-lines in the tail of the FIFO. Cache lines in the head of the FIFO are
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consumed by pull instructions in the main program, which consume cache-
lines from the head of the FIFO and transfer them into the MRU ways of the
DL1, causing evictions as necessary. The first cache-line returned by a Pull

instruction takes 4 cycles, and every subsequent cache-line takes 1 cycle.

The effect of the pull instruction on flow control is non-trivial. The
obvious option is to give a pull instruction the format pull z, where x is an
immediate operand. However, such an approach implies that the number of
cache-lines associated with a loop iteration must be a static constant. Every
prefetched loop must have the same cache footprint along all paths. There are

two ways to maintain this invariant:

1. Insert extra pulls at each branch of conditionals with unbalanced foot-
prints. This approach introduces significant overhead in the instru-
mented application since nested conditionals are extremely common. We

quickly discarded this option.

2. Rely on the compiler to count footprints along different paths, to insert
the largest possible footprint for a loop, and to insert padding push in-
structions (addp < recentregister >,0) into some paths of the prefetch
program. This approach causes extra overhead in the prefetch program;
as we show later, this overhead is not significant. However, it also causes
unnecessary pulls throughout an application, and that significantly im-

pacts the latency of pulls into DL1. Another major drawback is the
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increase in compiler complexity necessary to track footprints for each

path in a loop iteration.

Since neither option is effective, we convert the pull instruction to take no
opcodes but instead maintain the count of cache-lines to pull in hardware.
Our hardware for maintaining pull counts consists of two pieces: a second,
count FIFO to maintain count information, and the next instruction in the
TwoStep controller ISA. Every push to the main FIFO from the prefetch
program increments the counter at the head of the count FIFO, while next
instructions at the start of every loop iteration in the TwoStep prefetch kernel
bump up the pointer to the tail of the FIFO, creating and initializing a new
count. Pull instructions now read the head of the count FIFO to determine the
number of cache-lines to transfer. The space overhead for this enhancement
is minor, a few bits for every cache-line of FIFO capacity (< 32 bytes in the
baseline case). There is no time overhead since the compiler guarantees the
count to be at least 1, and reading the count FIFO can be overlapped with

the transfer of the first cache-line.

Abnormal situations: So far we have addressed the common case in the
execution of a prefetch kernel: the prefetch kernel spends less time per iteration
than the main program and thus keeps the FIFO occupied. Periodically the
FIFO fills up and causes the prefetch program to stall until there is room.
There are two abnormal exceptions to consider: when the prefetch thread

generates invalid prefetches, and when it falls behind the main program. The
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challenge in each case is first to maintain synchronization between main and
prefetch programs, and second to avoid polluting the cache. Prefetches to
invalid addresses do not stall the prefetch thread; instead the prefetch thread
inserts invalid cache-lines into the FIFO in order to maintain synchronization.
When the prefetch thread falls behind the main program the FIFO empties
out. Subsequent pulls increment a counter when they are unable to pop items
off the FIFO. The counter provides the prefetch program with some slack to
catch up with the main program, as future calls to next prefetches decrement
the counter rather than push items on the pull-count FIFO. If the counter
drops back to zero the prefetch thread can start pushing items onto the FIFO
again. If the counter instead saturates to some maximum level, usually FIFO

capacity, the prefetch thread is aborted.

5.5 Maintaining coherence

TwoStep maintains a copy of a program’s data in the FIFO; it is pos-
sible for this data to become stale in some situations. For example, consider a
scenario where the main program fetches, writes to and and evicts a cache-line
from the DL1 between the time that cache-line is pushed into the FIFO by
the prefetch controller and the time it arrives at the head of the FIFO and is
transferred to the DL1. The main program could now end up reading stale

data.

Handling coherence requires mechanisms and policies for detection and

recovery. There are two broad techniques to detect a coherence conflict be-
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‘ Instruction ‘ Semantics ‘

pull Transfer cache-lines from FIFO to DL1 as described
in Sections 5.4 and 5.5.

rcopy Ry < R, | Copy the contents of processor register R, to TwoStep
register Ry

start pc Copy immediate field pc into TwoStep PC register.

Table 5.3: ISA extensions for the main general-purpose processor.

tween cache and FIFO: first, scan the FIFO for duplicates when pushing, and
second, to scan the FIFO for duplicates when pulling. Similarly, recovering
from a conflict presents two options: either flush the FIFO, invalidating all its
contents without changing FIFO size in order to preserve synchronization, or
invalidate conflicting cachelines. Both detection and recovery can be speeded
up by using a hardware hash-table for filtering checks. Using such a hash-table
implementation implies that search is fast, and therefore invalidating just con-
flicting cachelines is uniformly preferable to invalidating the entire contents of
the FIFO. Later in this chapter we examine the effects of coherence conflicts on
the benefits of TwoStep in an idealized manner, without commenting further

on the low-level mechanisms for coherence detection and recovery.

5.6 Initializing registers before kernel execution

We conclude our description of TwoStep with a description of the proce-
dure for initializing a prefetch thread and activating it. Table 5.3 summarizes
the extensions to a general-purpose processor ISA required by TwoStep. De-

sign decisions behind the pull instruction has already been covered in detail.
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In addition, the processor requires two types of instructions to setup and kick
off prefetch programs for different program phases. The first is rcopy to copy
processor registers into their counterparts in the L2 controller, supplying the
prefetch kernel with all necessary inputs. After some number of rcopy instruc-
tions, the main program then executes a start instruction to set the PC register
of the L2 controller and commence prefetch kernel execution. Overheads in
these latter two instructions are easily tolerated; in our implementation, each
rcopy and start instruction takes up 10 instruction slots in the main proces-
sor pipeline without impacting prefetch thread performance. This overhead
should be a conservative estimate of the most likely implementation for these

instructions in a production setting — using memory-mapped I/O.

5.7 Interactions between pulls and stock compilers

One issue arose in our implementation because we choose to instrument
the main program at the level of the source code just like with DTrack, rather
than in the binary. As a result, pull instructions within loop nests can perturb
the code a conventional compiler generates. Since pull instructions occur in the
inner loops of the application, any such perturbance is likely to cause significant
degradation in performance. Since the Alpha compiler we use is not aware
of their semantics, this encoding has changed several times to work around
idiosyncracies in optimization policies. Prior versions of the pull instruction
caused the compiler to suppress loop unrolling and software pipelining for tight

loops containing pull instructions. Our current version maintains pointers to
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Feature Size/Value

#Registers 32

Instruction store 2KB

FIFO capacity 2KB

Pull latency 4 for first cache-line

1 cycle for subsequent cache-lines
Prefetch controller TLB capacity | Infinite

Table 5.4: Baseline TwoStep configuration. Processor configuration in Ta-
ble 3.1.

each of the memory-mapped addresses used for instrumentation, in order to
keep the compiler from hoisting these loop-invariant stores out of the loop they
are intended for. In a production setting the compiler’s policies will have to

be modified to ignore pull instructions.

5.8 Experimental Methodology

In order to assess the feasibility of TwoStep, we evaluate it over 8 of
our applications in the rest of this disseration. Benchmark choice was largely
driven by the characterization detailed in Chapter 3: 300.twolf, sphinx, and
181.mcf are irregular applications with the most intensive traffic to memory;
183.equake is a regular memory-intensive application; 179.vpr and 188.ammp
are irregular applications with moderate memory traffic; finally, 164.gzip and
179.art are regular applications with low memory traffic. This chapter’s initial
exploration using hand-crafted prefetch kernels further focusses on just 4 of
these applications: 179.art, 181.mcf, 300.twolf, and sphinx. We run these ap-

plications on a version of sim-alpha [25] enhanced with an implementation of
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TwoStep prefetching. Hints are used to implement pulls as well as demarcate
the endpoints of each simulation interval in terms of high-level loop iterations.
We specify high-level simulation start- and end-points for each application in
order to make consistent measurements across different binaries with and with-
out pull instructions. Both baseline and transformed codebases are compiled
with the aggressive Alpha GEM cc compiler [75]. Table 3.1 earlier summarized
the baseline demand-fetched machine configuration; Table 5.4 now enhances
this configuration with a baseline TwoStep configuration, specifying the size of
the instruction store, the default FIFO capacity, Pull latency, and TLB capac-
ity. Sensitivity results at various points in the next 3 chapters will motivate

these design choices.

Selecting a baseline machine configuration: Our baseline includes no

prefetching in the data caches. This decision was made for two reasons:

1. Neither the Alpha 21264 nor most past literature on prefetching included
hardware prefetching in the baseline. By following precedent, we allow

convenient comparison with prior work.

2. Not all prefetch schemes can be favorably combined with each other.
Subtleties in the design of different prefetch schemes affect interactions
between them. By using a purely demand-fetched baseline, we avoid
favorable or unfavorable perturbations to our results. This approach
allows us to safely explore interactions with other prefetch schemes in

Chapter 7.
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Comparing TwoStep with other prefetch techniques: We now briefly
outline our methodology for comparisons with other prefetch techniques, both
using hand kernels in the rest of this section, and using the TwoStep compiler
in Chapter 7. The TwoStep compiler is based on C-to-C translation using
the C-Breeze compiler toolkit [30], coupled with the same optimizing Alpha
GEM cc compiler in the backend. Our major comparisons are with Tagged
prefetch [87] and a family of region prefetching techniques: Scheduled Region
Prefetching (SRP) [55] and Guided Region Prefetching (GRP) [99].

Tagged prefetch prefetches the next cache-line on an L2 cache miss,
and it marks cache-lines as prefetches using an extra tag bit to mark non-
speculative data. This bit is set for demand fetches on initial fetch, and for
prefetches on their first non-speculative use. This approach allows limited
lookahead and concomitant improvement for simple spatial patterns, but fails

to improve more irregular applications.

SRP consists of a scheduler at the L2 that prefetches data from mem-
ory in 4KB-aligned regions around addresses causing cache misses. The flow
of prefetches is tuned to not slow down the processing of demand fetches; de-
mand fetches are prioritized over prefetches in the cache hierarchy (old and
unprocessed prefetches are silently dropped), and prefetches are placed in the
LRU way of the L2 to reduce cache pollution for applications with irregu-
lar access patterns. GRP augments these region prefetch mechanisms with
compiler-generated hints for pointer as well as region prefetching that serve to

improve accuracy and eliminate region prefetching in irregular applications.
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The techniques we compare TwoStep with span the spectrum from the
state of the art in production hardware to the state of the art in research
prototypes. Tagged prefetch is a simple hardware mechanism that exempli-
fies mechanisms included in many production processors. As such, it pro-
vides a common baseline of production machines to compare against. We
selected GRP and SRP as our examples of more recent research for three
reasons. First, we wanted the techniques we compare with to be relatively
recent, and reasonable exemplars of the state of the art, showing sophisti-
cated decisions for prefetch selection, timing and pollution-avoidance. Sec-
ond, we wanted a broad coverage of both hardware and software techniques,
and of techniques addressing both spatial and pointer prefetch. Third, we
were constrained by methodological constraints of easily-accessible infrastruc-
ture. Choosing a family of techniques allows us to perform comparisons across
just two parallel compiler-simulator toolchains — C-Breeze+ TwoStep+sim-
alpha and Scale+Region prefetch+sim-outorder [99] — thereby cutting down
on our infrastructure-management overhead and also on the baselines we need
to track. While the machine configurations are largely the same, GRP and
SRP use the sim-outorder microarchitecture to run Alpha ISA binaries [9]
rather than the detailed model of the Alpha 21264 that we use [25]. In addition,

GRP is compiled for the Alpha ISA using the Scale research compiler [62].
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‘ Feature ‘ 181.mcf ‘ 300.twolf ‘ 179.art ‘ sphinx ‘

Prefetch program size 52 37 29 100
(1-byte instructions)

Cache-lines pulled per inner loop 3-12 2-11 1 1-7
iteration

# Phases per topmost iteration 3 1 1 5

# Distinct loop nests 8 1 7 1

Max nesting depth 2 3 2

Table 5.5: Vital statistics of our hand-crafted prefetch programs

5.9 Preliminary evaluation with hand-crafted prefetch

kernels

This section summarizes some initial findings of our study, using hand-
crafted prefetch kernels to evaluate TwoStep. We begin with hand-crafted
kernels for two reasons. First, they allow us to explore the potential of our ap-
proach independent of compiler implementation. These results were generated
before the completion of the compiler implementation as a feasibility study.
Second, our hand-crafted kernels act as benchmarks for the later compiler im-
plementation, and subsequent chapters will show that we do well at fulfilling
the potential of TwoStep even though the compiler-generated kernels are very

different.

Our findings are in two categories. First, we evaluate TwoStep and
show significant speedups for the irregular applications we selected. Second,
we perform various sensitivity analyses in the design space, compare TwoStep
with some prior prefetching studies, and analyze our improvements by data

structure to confirm our intuitions. Table 5.5 highlights the small size of our
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Figure 5.3: Improvements with an infinite FIFO

hand-crafted prefetch programs and the small footprint of loop iterations, as
measured by the number of cache-lines pulled in each. Our detailed character-
ization of the previous chapters now yields a small number of distilled prefetch
kernels that provide substantial prefetch coverage in just 1-8 loop nests with

less than 100 instructions in the TwoStep ISA, each nest at most 3 loops deep.

Measuring limit performance: We begin by measuring the performance
of TwoStep relative to the baseline. For this experiment, we configure TwoStep
with an infinitely long FIFO so that the prefetch engine never has to stall to
wait for the main program to catch up. Pulls have a latency of 4 cycles between
request from FIFO and transfer to DL1. Figure 5.3 summarizes the reduction
in total cycle time after simulating well-defined intervals of our application
with TwoStep enabled. TwoStep shows speedups of between 10 and 15% for
our 3 irregular applications. The regular application 179.art has more minor
speedups, hinting at TwoStep’s limitations. We examine more applications in

Chapter 7 to determine the extent of this issue, and to investigate its causes.
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Figure 5.4: Fraction of main memory accesses remaining

Figure 5.4 demonstrates a second strength of TwoStep: we show that
successful prefetching may be accompanied by reductions in the number of ac-
cesses to main memory. While most prefetching studies at best avoid increas-
ing aggregate bandwidth requirements to main memory, the high accuracy of
TwoStep prefetches allows cache-lines to turn dead after their last prefetch
in an interval. This compression of live times increases temporal locality, re-
sulting in reductions in DRAM access counts. These initial results establish
the promise of TwoStep: accurate and well-timed prefetching into the cache

hierarchy for arbitrarily irregular access patterns.

Prefetching effectiveness: We now analyze the results of Figure 5.3 more
closely in order to understand the source of our speedups. In spite of the
reductions in cycle count, the number of DL1 misses is relatively unaffected
by TwoStep. To gain a deeper understanding of the critical path, we track
cycles that the pipeline commits no instructions, assigning blame to the data

structure of the load at the head of the reorder buffer. Figure 5.5 summarizes
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Figure 5.5: Stall cycles remaining after TwoStep prefetching for the most
frequently missing data structures (DS1 and DS2), compared to reduction in
aggregate stall cycles due to memory

the number of stall cycles reduced for each application on a data structure
basis. We show 4 bars for each application in this figure, for the top 3 data
structures by miss-count (the same data structures as in Tables 3.3-3.5), and
for the application in aggregate. Each bar shows the percentage of stall cycles
remaining after TwoStep prefetching is applied to the baseline machine config-
uration. Figure 5.5 shows that pipeline stalls due to major data structures DS1
and DS2 are reduced. These are the data structures targetted by our prefetch
programs. The impact of these reductions on aggregate pipeline stalls due
to memory is, however, markedly lower. We believe that understanding the
precise reasons for this difference — the other data structures that are now

critical — will be a fruitful avenue for future research.
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Figure 5.6: Comparison of TwoStep with some prior prefetching studies.

Comparison with prior studies: Having performed a detailed comparison
of TwoStep with a no-prefetch baseline, we now compare TwoStep with a
family of region prefetching techniques from prior work. As detailed in the
previous section, our results for region prefetching were obtained on a parallel
toolchain to ours; we therefore compare their speedups relative to independent

baselines.

Figure 5.6 summarizes the results of our initial comparison. For each
of our initial applications, we show the reduction in cycle counts resulting
from TwoStep and 4 region prefetch setups: GRP, GRP with only pointer-
prefetch hints enabled, GRP with only region prefetching hints enabled, and
SRP which provides no hints. TwoStep does substantially better than all
these approaches for 300.twolf and sphinx, and as well as the best of them
for 181.mcf, but substantially worse for 179.art. Thus, both GRP and SRP
have poorer coverage than TwoStep among irregular applications, but provide

substantially better performance for regular applications. We return to these
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Figure 5.7: Sensitivity of speedups to FIFO capacity

bipolar results for a more detailed study in Chapter 7.

SRP’s performance largely matches that of GRP, but with lower prefetch
accuracy and more profligate use of main memory bandwidth. However, the
benefits of spatial and pointer prefetching do not follow superficial trends.
181.mcf and sphinx are almost purely pointer-based techniques, but are im-
proved more by the region prefetching in GRP than the pointer prefetching.
These phenomena arise from accidental interactions with the memory alloca-
tor. In Chapter 7 we return to them and argue that such accidental interactions

are easily lost due to experimental changes such as a larger input set.

Sensitivity analysis: The TwoStep design has two major parameters -
FIFO capacity and pull latency - that must be realistic in order for it to
be feasible. We now evaluate its sensitivity to these parameters. Figure 5.7

summarizes the speedups obtained by TwoStep for our applications and the
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Figure 5.8: The effect of coherence conflicts on performance. Percentages
indicate fraction of false positives

sensitivity of these improvements to FIFO capacity. A 2KB (32-entry) FIFO
suffices to provide most of the benefit of an infinite-capacity FIFO, indicating

the effectiveness of the FIFO at realistic capacities for current technologies [2].

Coherence: We now evaluate the effect of handling coherence issues between
the caches in FIFO in TwoStep. Correctness is not affected as our timing-based
simulation model is independent of the model of functional computation. We
consider an oracle implementation that decides whether to pull or discard each
cache-line in the FIFO based on prior stores to that address. We then randomly
insert false positives in the oracle’s decisions in order to gauge the sensitivity of
our speedups to conflicts in the FIFO due to coherence. Figure 5.8 shows that
coherence with an oracle degrades our speedups by less than 1%. Performance
degradation is negligible upto 50% false positives (i.e. half the FIFO entries

are invalidated on each store). These results show our scheme to be robust
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Figure 5.9: The importance of pushing to DL1

to coherence conflicts, primarily due to the relative infrequency of stores in
our applications. The case of 100% false positives we consider in more detail

below.

Prefetching to L2 vs DL1: Figure 5.9 attempts to tease apart the twin
benefits of TwoStep - prefetching data to the L2 and making it available at

the DL1. It compares two configurations:

1. Normal: A conventional TwoStep microarchitecture.

2. SyncOnly: A modification to TwoStep where pulls remove cache-lines

from the FIFO but do not transfer them to DL1.

In the latter case, the FIFO acts purely as a synchronization mecha-
nism, causing the prefetch controller to stall when it runs too far ahead of the

main program. It is behaviorally very similar to the case of coherence with

100



100% false positives (always flush FIFO on store), and our results for these two
configurations are identical. Figure 5.9 shows that the importance of pushing
data to the DL1 varies by application; 181.mcf and 300.twolf derive more than
75% of their speedups from L2 prefetch, while in sphinx and 179.art more than
75% of the speedups is derived from prefetching to the DI1. We explain these

results in more detail in Chapter 7.

5.10 Summary

Irregular applications contain sophisticated access patterns. TwoStep
prefetches for such applications by providing simple hardware mechanisms - a
prefetch engine and a FIFO - that can be controlled by software. The hardware
mechanisms have useful properties: fewer constraints on prefetch scheduling,
resistance to DL1 pollution, and easy throttling. These improvements are
achieved at the cost of some burden to software: the compiler must statically
map prefetches in the prefetch program to pulls in the main program, and
ensure that the two stay synchronized. Initial experiments with hand-crafted
kernels show that it performs as expected for irregular applications, but not
as well for relatively regular applications. We now describe the compiler-
side component of this thesis before generating results for more applications
and identifying more rigorously the high-level characteristics that influence

application synergy with TwoStep.
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Chapter 6

Compiler support for TwoStep

This chapter describes and evaluates compiler algorithms to generate
useful precomputation kernels for TwoStep. Our compiler is structured to
convert from C to C, outsourcing back-end optimizations to an off-the-shelf
C compiler. It uses information from an interprocedural pointer analysis, and
performs several context-sensitive traversals of the whole program, starting at
the beginning of main() and processing function bodies everytime a call to

them is encountered.

We begin by enumerating the requirements for such a compiler, then
use these requirements to drive a staged tour of the compiler as a series of
refinements from the top down (Figure 6.1). The major challenge in designing
the compiler is to manage overheads due to pull instructions in our major loops.
A purely brute-force approach that tries all possible combinations of the major
loops is infeasible; instead we stage information from different sources — loop
profiles and slice densities — to perform feedback-based backtracking in the
search space of loop nest combinations. Figure 6.1 reflects this back-tracking

oriented architecture, described it in detail in Sections 6.1-6.4.

After the description, we contrast our compiler to the major prior work
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a)

Application Instrumented
C sources Sources
Loop Loop Cluster
- - Selection Clustering Processing
Loop iteration | Prefetch kernels
count profile
b)
Cluster
Select Compute Code
stitch pt Kernel Generation
0 ..--Too dense: prune Invalid code: give up
outer loop
_ | Seect Compute Check L
prefetch pt Slice Density
A | Y

Tight loop encountered:
retry with different prefetch point

Figure 6.1: Overview of the TwoStep compiler as a series of refinements.
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A B C

void leaf (A* a) {

void leaf (A* a) { a->val = X;

a—>val = X;
} }

. . . void setList (A* list) {
void setList (A* list) {

_ intcounter =0;  ____oo----eoT addp list, list, 0, 0
int counter = 0; pull; - loop:
while (list) { while (list) { jeqi list, 0, exit
++counter; pull; addp list, list, next,
leaf(list); ++counter; jeqi list, list, loop
list = list=>next; leaf{(list); exit:
} list = list->next;
}
doSomething(counter);
} doSomething(counter);

}

Figure 6.2: A simple C program (A), pull instructions added to it (B), and the
corresponding prefetch program (C). Arrows connect prefetches in the prefetch
program with corresponding pull instructions in the main program.

in compiling for precomputation and enumerate the major areas where pre-
computing for TwoStep presents a different set of contraints than compilers
have faced in the past. Finally, we perform a comprehensive offline validation
of our compiler’s policies, exploring the entire state space for our applications
in search of good slices that may have been missed. This analysis provides in-
sight into one limitation of precomputation-based prefetching: when prefetch
bandwidth utilization is critical in tight loops, it is necessary to trade off
prefetch coverage for slice density. Slices that are too dense result in prefetch
kernels that do much of the same work as the main processor, reducing the
prefetch thread’s ability to run ahead of the main program and therefore its

effectiveness.
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6.1 Goals and requirements

Figure 6.1 illustrates the transformations TwoStep requires. Given ap-
plication C sources it must emit useful prefetch kernels in the TwoStep ISA
at the L2 controller, and appropriately instrument the main program binary
running at the processor. These twin modifications require mechanisms and

policies for the following:

1. Selecting loads most likely to cause pipeline stalls. We call these static

program locations prefetch points.

2. Selecting for each prefetch point a stitch point — a location where pre-
computation may profitably be started, early enough to give TwoStep
the slack necessary to run ahead, but not so early as to cause the prefetch
program to grow too bloated, or to be often led astray before the prefetch

point is reached.

3. Generating the prefetch program corresponding to all the computation

necessary to compute the prefetch point from the stitch point.

4. Inserting pulls at the start of each loop involved.
For an illustration of these transformations, see Figure 6.2. This figure shows a
simple program to operate on a linked list, the places where the compiler needs

to insert pulls, and the corresponding prefetch program to run on TwoStep.

We use this example at various points in the rest of this chapter. The crucial
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requirements for the compiler are to generate prefetch programs shorter than
the corresponding parts of the main program so that it runs ahead, and for
the instrumentation in the main program to be lightweight. Also, every pull
executed by the main program must do useful work to justify its overhead; the
compiler must avoid inserting pulls at locations where the prefetch program is
unlikely to have data in the FIFO. In the next three sections, we describe the

process by which the TwoStep compiler meets these requirements.

6.2 Analyzing the application by loop cluster

Given the above requirements, the compiler’s flow can be decomposed
at the highest level into 3 pieces as shown in Figure 6.1 a): Loop selection
to identify what must be prefetched, loop clustering to maximize slack for
the prefetch kernel, and cluster processing to generate at most one prefetch
kernel per loop cluster. Our first step, loop selection, uses one piece of easily-
obtainable profile information — loop counts. To statically compute the deref-

erence volume:

DVipop = Itersipep * StaticPtrsipep (6.1)

where [ters is the average number of iterations of this loop per loop entry, and
StaticPtrs is the path-insensitive count of deref operations in this loop body
excluding loops nested within it. We then sort the list of loops by DV, shortlist
the top loops that add up to 90% of total application DV, and commence the

second step — loop clustering.
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Figure 6.3: Application viewed as a tree of context-sensitive loops. Shaded
nodes are shortlisted loops. Three clusters are shown. Leaf C does not belong
to a cluster because it has no ancestor in the shortlist.

Loop clustering: Figure 6.3 depicts the compiler’s view of an application
during loop clustering. The application is a tree of loops. The root node rep-
resents the entire application — the body of the main() routine, and all other
nodes represent context-sensitive loops. The children of each node are loops
contained within its body. Shortlisted loops are shaded. Function boundaries
have been elided. The compiler builds up loop clusters starting at each leaf
loop — a loop with no subordinate loops — by scanning outward adding con-
tainer loops to the cluster, occasionally creating a boundary and starting a

fresh cluster. Our clusters maintain the following invariants:

e Each cluster contains innermost exactly one shortlisted loop. If we en-
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counter a second we start a new cluster. Leaves without an enclosing
shortlisted loop at any level are discarded, since they provide insufficient

incentive for prefetching.

e Each cluster contains as many loops as possible both above the short-
listed loop. Later phases may subset a cluster; we give them as much to

work with as possible.

e We never allow a cluster to grow past a function boundary if it is called
in multiple contexts in the loop tree and not all of these contexts lie
within a cluster. More precisely, we permit a loop A to be added to the
cluster of a subordinate loop B in a different function f only if 99% of

iterations of loop B (from the loop profile) have an ancestor in a cluster.

This condition prevents us from adding the overhead of pulls in contexts
where there will not be a prefetch kernel running any significant frac-
tion of the time. Enforcing this condition requires a second pass after

clustering to prune bad clusters.

The rest of the compiler processes these clusters in descending order of their

DV.

DV;:luster — Z DWoop (62)

This ensures we prioritize our cluster candidates by expected cache

miss count. The list of clusters can have overlap and usually does; after a
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cluster is successfully processed no member or ancestor loop can be processed
again. This constraint prunes some clusters and eliminates others entirely

from consideration.

6.3 From loop cluster to prefetch kernel

As depicted in Figure 6.1 b, processing a cluster consists of accepting a
cluster of loops as input and emitting at most one prefetch kernel correspond-
ing to it. It consists of three major phases — stitch point selection, kernel
computation, and code generation — and one feedback path to prune succes-
sive outer loops from a cluster if the resultant prefetch kernel is found to be
too dense relative to the main program. We now focus on the first and third,

postponing the description of the kernel computation to the next section.

Stitch-point selection: Given a cluster of loops, the stitch point is the
point in the program to insert stitch code to trigger the corresponding prefetch
kernel. Since stitch code must trigger precisely once for every execution of the

loop cluster, a good stitch point has the following properties:

e As a boundary-condition initialization, it occurs outside the loop cluster

itself.

e It dominates the cluster; every execution of the cluster should have exe-

cuted stitch-point code.
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e It does not lie outside the loop containing the cluster. Stitch code must

execute every time the cluster is entered.

e It does not lie before a sibling loop in the loop tree. This prevents
too-early initialization as well as destructive overlap between prefetch

kernels.

e It does not lie before a sibling function call. Again, this prevents arbi-
trary gaps between initialization and prefetch use. However, this con-
straint does not exclude the possibility of the stitch point and cluster
being in different functions; the stitch point may lie further up the call
stack subject to previous constraints. If we span a function boundary,
however, we must compute a good stitch point in every possible context

of the function.

e It occurs as far before the cluster as possible subject to the previous

constraints.

Figure 6.4 shows our algorithm for selecting good stitch points, taking these
constraints into account. The individual conditions have a one-to-one corre-
spondence with the above properties. We add two points to clarify the recur-
sive case when moving the stitch point up the call stack. First, we can clear
answerStack because we are guaranteed to find at least one more dominating
statement where the stitch code may be inserted — right before the last call.

Second, the recursive call cannot be passed cluster itself; it must instead be
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// 1 is the context-sensitive statement list of the input program

selectStitchPoint (stmt, cluster, answerStack):
traversing s upwards from stmt in 1:
if s dominates cluster: answerStack.push(s)
if function call is encountered: break
if loop boundary is encountered: break
if function header is encountered
and there is more than one caller:
clear answerStack
for every calling context c:
cluster’ = correspondingContext(cluster, c)
stitch’ = selectStitchPoint(c, cluster’, [])
answerStack.push(stitch’)
end
return answerStack
end
end

return answerStack.top
end

// Usage: selectStitchPoint(cluster, firstStmt(cluster), [])

Figure 6.4: Stitch point selection starting at a specific statement. Takes a loop
cluster as input and returns a list/stack of context-independent statements
after which stitch code should be instrumented.
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a context-sensitive statement corresponding to the static cluster but in the

same context as the caller c.

Code generation: Once a stitch point is selected and its prefetch kernel
computed and found to be not too dense, it remains only to emit the prefetch
kernel in terms of the TwoStep ISA. A simple one-pass code generator suffices
for this purpose, with simple rules for translating each statement type in a
lowered C form — containing only ifs and gotos and no more than one binary
operation and one assignment per statement as shown in Figure 6.5 — into
some sequence of TwoStep instructions. Our prototype compiler performs no
register allocation, assuming an infinite pool of registers. It also performs no
back-end optimizations. Later in this chapter, we show that these decisions do
not impact our evaluation. The only other complication is the book-keeping
necessary to skip past empty basic blocks without perturbing the global control

structure of the prefetch kernel.

There are a few rare circumstances where the compiler is currently
unable to generate code for a prefetch kernel: if the kernel contains a call to
a library routine whose body is not available to our whole-program analysis,
or if it contains a recursive function call. In these circumstances we currently
discard the kernel. Otherwise, we insert the stitch code computed during
slicing (described below) and insert pulls at the start of each loop in the

cluster.
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void setList(A * list) {

int counter, __TO, __T1, __T2;
{
counter = 0;
goto __LO;
}
{
__LO:;
if (1ist == 0) goto __L1;
goto __L3;
}
{
__L3:;
__TO = counter + 1;
counter = __TO;
__T1 = leaf(list);
list = (*list).next;
goto __LO;
}
{
__L1:;
__T2 = doSomething(counter);
}

Figure 6.5: Linked list traversal in lowered C form.
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6.4 Selecting a good slice for a fixed cluster

We now turn to Figure 6.1 ¢), the final component of the TwoStep
compiler. Once again, we divide up the process of generating kernels from a
loop cluster and fixed stitch point into three phases — prefetch point selection,
slice construction, and a density check. Slices that are found to be too dense
are retried after stripping an outer loop from the cluster as described in the
previous section. One final heuristic is to discard slices that contain a loop
with a single basic block, because all such tight loops serve to do is to allow
the main program to catch up with the prefetch program, without actually
providing any prefetching benefit. We perform this test after slicing because
in practice such really tight loops are often not part of the slice even if they
are within the loop cluster of interest. When we encounter them in a slice we

backtrack to pick a different prefetch point and recompute the slice.

Prefetch point selection: The prefetch point of a cluster is a pointer deref-
erence to be prefetched within the innermost loop of the cluster. We simply
pick the first such statement we find, checking that it cannot be hoisted out
of the innermost loop, and avoiding the innermost-loop inductive variable if
possible. We rely upon later checks for slice density to backtrack and try a

different prefetch point if necessary.

Slice computation: Given a prefetch point and a stitch point we can now

compute the backward slice starting at the prefetch point. Figure 6.6 illus-
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trates the necessary inter-procedural transformation. The slicing algorithm
consists of starting at the prefetch point and traversing back the interprocedu-
ral reaching-definitions as computed by the pointer analyzer. We mark every
statement encountered in this tree traversal, cutting traversal short when we
attempt to move to a statement before the stitch point in the context-sensitive

statement list of the program (statement 1 in Figure 6.4).

Once the set of statements in the slice is computed, we can identify the
set of values that need to be transferred to the TwoStep prefetch controller
at the stitch point. We perform a backward interprocedural traversal, adding
values on the right-hand side of statements in the slice as we encounter them,
and removing values on the left-hand side. When a procedure call is encoun-
tered, we rename formal parameters with call arguments and proceed. This
traversal contains a parsimonious list of the variables that need to be seeded
into TwoStep’s registers from those of the main processor before starting the

prefetch kernel for the current slice.

Density check: Having computed the slice, we must now check that it
prunes enough computation to allow the prefetch thread to run ahead of the
main program. Our density metric is the fraction of the statement volume

between prefetch point and stitch point that is part of the slice.

SVioop = Itersipep * SlicedStaticStmtsioep (6.3)

S‘/;luster - Z SWoop (64)
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void leaf (Ax a) {
a->val = X ;

void setList (A% list) {

loop:
int counter = 0 ; P

if (!list) goto exit ;
list->val = X ;
list = list->next ;
goto loop ;

exit:

while (list) {
++counter ;
leaf (list) ;
list = list->next ;

doSomething (counter) ;

Figure 6.6: A simple C program and its context-sensitive interprocedural back-
ward slice

TVieop = Itersipep * StaticStmtsipep (6.5)
T‘/;lusteT - ZTWOOP (66)
DenSitycluster = S‘/cluster/T‘/cluster (67)

In these equations, SlicedStaticStmts;y,p is the number of simple state-
ments in 3-address form in one iteration of the loop that belong to the slice,
and StaticStmtsiy is the total number of such statements in this iteration.
Slices with densities under a fixed threshold of 60% are retried with other
prefetch or stitch points as outlined above. Our empirical reasons for selecting

this threshold are described in Section 6.5.
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Summary: We have described the implementation of the TwoStep compiler
in detail. TwoStep transforms an application augmented with loop iteration
count profiles into prefetch kernels in the TwoStep ISA for the important loop
clusters. Parts of this workflow are common with other slicing and precom-
putation studies, while parts are necessitated by the novel TwoStep microar-
chitecture. In the rest of this chapter, we describe a preliminary evaluation of
our compiler comparing slices generated automatically with those generated
by hand. We then discuss in greater depth the effect of a pull-based prefetch-
ing microarchitecture on the compiler and how it differs from prior algorithms

for automatic precomputation.

6.5 Evaluating the slices generated by the compiler

This section evaluates each of the major policies in our compiler, and
we demonstrate that these policies adequately cover the state space for our
applications. We cover in order: loop clustering, densities for different cluster
configurations (the backtracking loop in Figure 6.1 b), and finally the effect of
prefetch point selection on density (loop of Figure 6.1 ¢). We then summarize

the vital statistics of the prefetch kernels selected for each of our applications.

Loop clustering: Clustering bounds the state space for searching for useful
prefetch kernels in later passes. Table 6.1 summarizes the usual size of this
state space, measured as the distribution of loops of different nesting-depths in

our applications. These loop nests all contain innermost loops in the top 90%
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#Loops of

nest depth:
Application | 1 ‘ 2 ‘ 3 ‘ 4
175.vpr 8114 (0|0
179.art 0] 6[2]1
181.mcf 0] 111
183.equake |0 | 0|3 |0
188.ammp 3| 4151
256.bzip2 41 3123
300.twolf 71 81010
sphinx 3|1 6[01]0

Table 6.1: Size of the clustering state space

of loop volume for the application. Loop nest candidates within an application
often have overlapping outer loops; the total loop volume for these nests often

exceeds 100%.

Choosing loop clusters: Since a prefetch kernel for one loop eliminates
overlapping kernels in any containing loops, the goal is to maximize the loop
volume that is covered by kernels without drawing too much computation
into the kernel. The density threshold is a crucial parameter in the design
of the TwoStep compiler, and affects the ability of the compiler to handle
deeply-nested loops. In picking a good density threshold, we are guided by
the densities of the most deeply nested loops in our applications, some of which
are shown in Table 6.2. In this figure, we assume prefetch point selection as
described in Section 6.4 and study the effect of loop nest depth on density

and on per-prefetch slice cycle-time reduction. For each loop cluster, we suc-
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Innermost Nesting | # stmts | Slice density | Cycle-time

loop function reduction

179.art

train_match 4 290 86% -2.5%
3 288 44% 0.1%
2 224 4% 0.0%
1 120 3% 0.0%

train_match 2 224 5% 0.5%
1 120 3% 0.0%

181.mcf

refresh potential 2 27 48% 7.9%
1 22 18% 4.7%

primal bea mpp 3 487 1% 0.5%
2 137 42% 4.2%
1 88 21% 4.0%

183.equake

sSmvp 3 358 10% 3%
2 156 4.5% 0.8%
1 155 2.5% 0.8%

188.ammp

mm_fv_update_nonbon 4 993 26% 0.5%
3 681 26% 0.2%
2 121 9% 0.2%
1 28 30% 0.0%

eval 3 27234 53% -16%
2 27178 0% 0.0%
1 27152 0% 0.0%

Table 6.2: Slice densities for the different configurations of the most interesting
clusters
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while (1) {
a = PICK_INT(1 , numcells);

acellptr = carraylal; (1)
atileptr = acellptr—>tileptr ; (2)
atermptr = atileptr->termsptr ; (3
for(t=atermptr; t; t=t->nextterm) { (4)

ttermptr = t->termptr ; (8)
}

}

Figure 6.7: Loops with lots of dependent instructions have a small number of
possible densities (300.twolf).

cessively strip the outermost loop, showing the density of the resulting slice
and the speedup resulting from applying just this slice. Using this data, we
exclude clusters that generate slices with a density greater than 60%. The
60% threshold is aggressive and permissive; it avoids ever dropping a favor-
able configuration. While it does retain some dubious clusters with extremely
large slices that might simply add overhead at runtime, in practice we find that
these candidates are eliminated by the compiler anyway because they make a

library call the compiler cannot generate code for.

Prefetch-point selection: Having characterized the loop nest sizes and
the space of clustering decisions, we now turn to the effect of prefetch-point
selection on selected clusters. The majority of loop clusters have 1-4 prefetch
point candidates with widely varying densities, and deciding about them is

easy. We find that the loops with hundreds of prefetch point candidates break
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Cluster Nesting DV | Prefetch points | Common densities
175.vpr | 2 | 31.2% 18 | 7.72%

175.vpr |l 21 20.1% 47 | 10%, 23%, 34%

175.vpr |l 1| 3.2% 136 | 2.7%, 13.9%

179.art | 4 | 32.1% 7 | 100%

179.art 1l 2119.7% 9| 5%, 18.2%

179.art I 1] 2.0% 19 | 9.5%, 23.8%

181.mcf | 2| 51.3% 54 | 75.1%

181.mcf Il 11]51.3% 52 | 72.3%

181.mcf Il 1]16.4% 12 | 25%, 16.7%, 8.33%

183 equake | 31 67.7% 200 | 1.18%, 2.11% 9.8%, 82.7%
183.equake Il 2| 62.7% 200 | 4.8%, 5.6%, 48.8%
188.ammp | 2 | 51.2% 321 0.2%, 0.1%

188.ammp |l 1| 45.6% 3161.5%

188.ammp IlI 1] 11.4% 311.25%

256.bzip2 | 1]31.9% 17 | 34.4%, 43.8%

300.twolf | 2| 26.6% 7| 8.3%, 9.2%, 32.4%, 93.5%
300.twolf I 21 16.8% 20 | 0.8%, 2.8%, 6.9%, 40.3%
300.twolf I 1] 41% 30 | 0.6%, 2.9%

sphinx | 31 83.5% 472 | 83.5%, 48.3%

sphinx |l 1] 35.2% 10 | 5.8%, 76.1%

sphinx [l 1| 51% 6 | 35.7%

Table 6.3: Size of the prefetch-point selection state-space, with common densi-
ties for different prefetch-points. DV stands for dereference volume as defined

in Section 6.2
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down into a small number of nested equivalence classes because of the presence
of low-ILP dependence chains. The presence of a loop-carried dependence
ensures that including one of the dereferences in an equivalence class results
in all the others being included. Figure 6.7 illustrates this pattern. Selecting
any of the dereferences in statements 1-3 as the prefetch point will include
all 3 statements in the backward slice. Density will thus remain the same.
Selecting 4 or 5 would add both. Thus, there are only two legal densities in
this loop nest, assuming no dereferences (ie. only computation) in the elided

portions.

Table 6.3 enumerates some of the major loop clusters that test prefetch-
point selection and the number of available prefetch point candidates — state-
ments in the innermost loop of the cluster that contain pointer dereferences —
for each. It also shows the most common densities for these loop clusters. In
all but one of our applications, the largest possible density bounds the critical
path to the last load as opposed to the computation performed using the loads
in a loop cluster. Once again, our simple density threshold successfully picks
a good prefetch point for all slices, while relying on overly large slices to be

pruned during code-generation.

The notable exception to this pattern is 183.equake, where the presence
of independent loads is common, causing multiple parallel dependence chains
in a loop because of its multi-dimensional array data structures. Figure 6.8
illustrates this. Modifying the compiler to slice for multiple prefetch points

per cluster allows us to explore the space of all possible combinations, but
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for (i = 0; i < nodes; i++) {
next = Aindex[i];
sumO0 = A[next] [0]J [0]*v[i][0] + A[next][0][1]*v[i][1]
+ A[next] [0] [2]*v[i][2];
suml = A[next] [1]J[0]*v[i][0] + Alnext][1][1]*v[i][1]
+ A[next] [1][2]*v[i] [2];
sum2 = A[next] [2][0]*v[i][0] + Alnext][2][1]1*v[i][1]
+ A[next] [2] [2]*v[i] [2];
+

Figure 6.8: 183.equake consists mostly of loops with multiple dependence
chains.

once again we are either left with good density slices that fail to prefetch all
important loads, or high density slices that are unable to run sufficiently far
ahead of the prefetch thread. We prune the latter candidates from further
consideration. A prefetch engine that can prefetch for multiple iterations in
parallel — and so utilize all available prefetch bandwidth for independent

iterations — may be able to consider such slices more aggressively.

Compiler back-end and prefetch kernel characteristics: Clusters and
slices that fit the criteria of previous phases are now ready for code generation.
Table 6.4 summarizes some characteristics of the resultant prefetch kernels in
the TwoStep ISA for our applications — the number of individual kernels for
each application, their total static size in instructions, and the number of regis-
ters utilized. We also present corresponding data from the manually-generated
prefetch kernels of the previous chapter. As can be seen, the automatically

generated kernels are less parsimonious than the hand-crafted versions along
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Application | Kernels | Static size | # Registers

C| H C H C|R|H
175.vpr 5 - | 100 - TT12) -
179.art 2 1| 40 29| 26|14 9
181.mcf 3 3| 221 50 | 139 |32 | 14
183.equake 1 -1 29 -1 30|12 -
188.ammp 4 - | 514 - | 355 |48 | -
256.bzip2 2 - | 120 -| 87|12 -
300.twolf 9 1] 305 331271 31|20
sphinx 9 21935 99 | 671 | 31 | 16

Table 6.4: Vital statistics for the slices generated by our compiler (C), and

comparisons with the hand-crafted slices from Chapter 5 (H).

each of these dimensions:

e The number of kernels goes up partly because the compiler is not smart
enough to merge sibling clusters, and in a few cases because it generates

kernels not covered in the hand-crafted case.

e The sizes of the prefetch kernels goes up because the compiler performs
no peephole optimizations, resulting in redundant COPY and JUMP
operations. We perform JUMP chaining to eliminate empty basic blocks
in the prefetch program. However, we do not eliminate JUMPs to the
next PC. We found that these peephole optimizations had no effect on
prefetching effectiveness or cycle count; the bottleneck in executing our

slices is memory and pull latency rather than the number of instructions

executed in the L2.

e The TwoStep compiler currently performs no register allocation, always
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creating a new name rather than recycling free ones. The column R
in Table 6.4 shows the true register requirements for our applications
after straighforward manual register allocation. With the exception of
one slice in 188.ammp, all our applications require 32 registers or fewer,
even though the compiler remains oblivious to any register-capacity con-
straints at this time. In production it will need to be enhanced to occa-

sionally spill.

Stitch code in the main program: Once the prefetch kernels are gener-
ated, the compiler must augment the main program for two reasons: inserting
stitch code to trigger different prefetch kernels at stitch points, and inserting
pulls at the start of loop iterations being prefetched for. Compared to manual
kernels the overhead due to stitch instrumentation increases for two reasons:
the increased fragmentation into prefetch kernels we alluded to above increases,
and a conservative algorithm in the compiler that occasionally stitches vari-
ables that are never used by the prefetch program. These redundant variables
also cause some increase in the register footprint of our prefetch kernels. They
arise because our implementation maintains pointer-aware reaching definitions
by statement rather than symbolic location in order to conserve compile-time

space.
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6.6 Discussion: TwoStep vs prior precomputation com-

pilers

As detailed in Chapter 2, precomputation-based prefetching has been
studied in several instances of prior work [54,76,77]. Most such studies have
either computed slices in hardware or pursued post-compilation binary trans-
lation. Computing slices in hardware restricts the scope of individual slices,
while binary translation detects only simple pointer-chasing patterns. Both
these approaches are less effective at addressing the more complex interleav-
ings of spatial and pointer access that we demonstrated in Chapter 3. The
state of the art in thorough compiler-based precomputation is the work of Kim

and Yeung [47]. We focus on this study in our comparison.

Kim and Yeung’s compiler uses 2 kinds of profile information — loop
iteration count profiles and cache miss profiles — to select compute precompu-
tation slices for execution in spare hardware contexts of a simultaneous multi-
threading (SMT) processor. The compiler consists of three major phases: slice
generation, prefetch conversion, and threading scheme selection. Slice genera-
tion consists of selecting stores to start the slice at using the cache miss profile,
computing a slice back 2 loop nests. Once the slice is computed, prefetch con-
version consists of removing stores and replacing loads with non-blocking vari-
ants. Finally, threading scheme selection considers two alternatives to simple
serial preexecution — doall which speculatively updates the inductive variable
for each iteration and runs later iterations speculatively in additional SMT

threads; and doacross which performs a more detailed analysis of loop-carried
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dependences to decompose loop iterations into a ‘backbone’ and ‘ribs’, so that

ribs may be executed in parallel.

This scheme — which we refer to as the SMT compiler — has much
in common with our TwoStep compiler: a dependence on loop iteration count
profiles, pointer analysis and slicing; the crucial decision of what to prefetch or
what load to start backward slices at; sandboxing prefetch threads from mak-
ing architecturally-visible changes. There are also several points of difference

in approach:

1. The SMT and TwoStep compilers live in very different contexts in terms
of hardware budget. The SMT compiler assumes a full processor ISA
for prefetch threads with potentially multiple threads in flight. TwoStep
consists of a simple controller that is little more than a state machine,
leaving processor resources for other uses, and also simplifying our code

generation.

2. Using a prefetch controller at the L2 is also more parsimonious than pro-
cessor threads in terms of cache bandwidth. Since our prefetch controller
sits at the L2 we only pay half the round-trip latency and bandwidth
for each memory access. The reduced latency is especially important for

sequential pointer-chasing.

3. The SMT compiler uses a simpler stitch-point selection criteria than we

do — to simply stop two loop nests above the prefetch point. We explore
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more aggressive possibilities and use the post-slicing density metric de-
scribed above to backtrack and prune outer loops. Our more aggressive
iterative solution shows 9% speedup for twolf as compared to the 2%
they show, a difference which is significant given the extra hardware and

multiple parallel prefetch threads of the SMT compiler.

. Our pull instructions have about the same overhead as the semaphores in
their implementation; however pulls are superior in two ways. First, the
semaphores of the SMT compiler fix the application to a fixed number
of iterations, where a FIFO-based approach measures the amount of
potential pollution more precisely allowing us to be more aggressive in
some cases. Second, using a FIFO decouples prefetch distance from
pollution. Tighter loops can thus benefit from a larger FIFO and prefetch

distance without risking pollution in the DL1.

. The SMT compiler relies on cache-miss profiles generated using cache
simulation. We use simple static models instead and rely for correction
on backtracking in later phases. As a result, we are able to generate
profiles using native rather than simulated execution. The time taken
for cache simulation is proportional to the size of the dynamic execution
of interest; the extra time taken by backtracking depends on application

complexity. For applications in the SPEC suite, the two are comparable.

. Having multiple prefetch threads in flight addresses a concern for TwoStep

— sequential prefetch threads fail to use all available prefetch bandwidth.

128



This can become important in tight loops. As we show in Chapter 7,
combining a precomputation-based scheme with a history-based scheme

recovers a lot of the benefit in a simpler and more modular manner.

These differences are largely a result of the different hardware contexts of our
respective studies. Given multiple parallel contexts, Kim and Yeung focus on
ways to maximize their use, while TwoStep’s design was driven by the desire to
minimize the latency of pointer chasing. This latency is crucial in the patterns
of serialized prefetching combining complex sequences of pointer-chasing and
spatial offsets in some applications that we observed using DTrack. We now
evaluate slices of the TwoStep compiler using several static metrics, deferring

the more comprehensive evaluation of the toolchain to the next chapter.

6.7 Summary

This concludes our description of the TwoStep compiler. Our detailed
surveys of the state space that the compiler must search serve to validate its
density-based policies. We have shown that the state space, suitable decom-
posed, is not overly large and that a relatively simple compiler organization
serves to find all opportunities in the form of favorable prefetch slices. The de-
tailed analysis also uncovers the limitation of precomputation-based prefetch-
ing responsible for 179.art’s lack of speedup: that certain kinds of loops with
lots of dereferences per iteration organized in multiple dependence chains need

a favorable compute-store ratio to be effectively prefetched. The ‘tighter’ the
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loop in terms of computation, the harder it is to effectively prefetch all of the
different loads in the loop. Aside from this limitation, however, our compiler
successfully handles a wide variety of applications and successfully converges
on the right clustering and slicing decisions to compare very favorably with
manually-generated kernels. While our manual versions have fewer static ker-
nels, often combining multiple kernels where the compiler cannot, and unifying
loops with identical access patterns, the compiler is able to obtain nearly all

the speedup obtained manually.

The compiler performs whole-program analysis based on detailed pointer
information. The more heavyweight analysis requires multiple context-sensitive
traversals of an application’s source code, one for each candidate slice processed
during density measurement and code-generation. Compiling our largest code-
bases — sphinx — currently takes over 2 hours. Recent advances in adaptive
on-demand context-sensitivity [95] could be used to optimize these traversals.
In the rest of this dissertation, we focus on evaluating the resulting kernels,

and on identifying the strengths and weaknesses of TwoStep.
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Chapter 7

Evaluating TwoStep

Having described the TwoStep microarchitecture and compiler we now
perform a detailed evaluation and characterization of TwoStep for our ap-
plications. Our results are broadly divided into two categories: comparison
studies to measure the benefit of TwoStep relative to different approaches, and
state-space explorations to better understand the strengths and weaknesses of
TwoStep. In these results, we prune from consideration 4 applications with low
memory usage that TwoStep fails to improve: 165.gzip, 177.mesa, 186.crafty,
and 176.gcc. We were unable to compile 176.gcc and 197.parser because the

TwoStep compiler runs out of memory.

We begin by measuring the coverage and accuracy of TwoStep prefetch-
ing for our applications using the methodology detailed in Section 3.3, showing
that TwoStep successfully prefetches for a broad spectrum of access patterns.
We then measure how this effectiveness with access patterns translates to ag-
gregate speedups, comparing overall cycle-count reductions due to TwoStep
with two prior prefetching approaches. Our results show that TwoStep’s
strengths are complementary to prior approaches; it especially performs well

on extremely irregular applications such as sphinx, 188.ammp and 300.twolf
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that other techniques are unsuited to.

The next three sections delve into the reasons for these differing strengths.
In brief, an application may be better suited to forward-looking precomputation-
based prefetching or backward-looking history-based prefetching. History-based
prefetching relies on finding patterns (usually spatial) in the dynamic address
stream of an application. It is better suited to applications with spatial lo-
cality. Precomputation, on the other hand, can handle more complex access
patterns where the address stream does not have a reliable pattern; how-
ever it requires a lot more sequential chaining between prefetches to generate
accurate prefetches. As a result, it requires more computation per loop iter-
ation to reliably provide improvements. We demonstrate this dichotomy first
with a microbenchmark study, then with a more detailed characterization of
prefetching in real-world applications to explore the relative strengths of region

prefetching and TwoStep.

The final sections assess the relative importance of three important
parameters of our system: DRAM latency, the capacity of TwoStep’s FIFO,
and the latency of pulls in transferring cache-lines from FIFO to DL1. These
results support our choice of baseline and show that implementing TwoStep is

a realistic proposition on current and future hardware.

7.1 The effectiveness of TwoStep prefetching

A prefetch technique is traditionally evaluated along two dimensions:

by its accuracy, and by its coverage. TwoStep’s accuracy is consistently high.
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Figure 7.1: The accuracy of TwoStep prefetching for our applications.

We measure accuracy as the fraction of cache-lines prefetched into the DL1
that were used before eviction. Figure 7.1 shows that this fraction is uniformly
high across all our applications; 179.art exhibits the worst accuracy of 87%.
As a result of the high accuracy, TwoStep prefetching rarely increases an
application’s bandwidth requirements to main memory. Indeed, as Figure 7.2
shows, it sometimes reduces cache misses at the DL1 or the L2 as accurate
prefetches improve temporal locality in the caches. We now describe this figure

in more detail as we focus on the coverage of TwoStep.

Evaluating coverage: Figure 7.2 shows the misses remaining in the DL1
and the L2 after TwoStep prefetching relative to a baseline with no prefetch-
ing. Reductions in DL1 misses are due to useful pulls, and we return to these
in more detail in the Section 7.6. We separate misses in the L2 to 3 separate

categories: misses that were exclusively due to prefetches (i.e. miss latency
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Figure 7.2: Aggregate misses remaining after TwoStep prefetching. This met-
ric underestimates the improvement due to TwoStep.

was either entirely overlapped, or the prefetch was useless), misses that were
initiated by prefetches but subsequently also by demand fetches (i.e. miss la-
tency was partially overlapped by prefetching), and misses that were initiated
exclusively by demand fetches (i.e. no latency was overlapped by prefetch-
ing). Figure 7.2 shows that while prefetches initiated by TwoStep are mostly
accurate, different applications are able to leverage such prefetches to vary-
ing degrees. In 181.mcf, for example, TwoStep reduces total L2 misses by 17%
and successfully overlaps all the latency of nearly half the remaining misses. In
256.bzip2, however, the compiler is unable to generate any prefetch programs

with good densities, and so TwoStep provides no benefit.

Figure 7.2 exposes two disadvantages of using misses or miss-rate as a
metric for measuring L2 coverage. First, the reduction in aggregate DL1 and
L2 misses often underestimates speedups as we show later. Second, the ratio

of demand misses to prefetch misses also serves as a poor indicator of speedups
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Figure 7.3: Stall cycles remaining after TwoStep prefetching for the most
frequently missing data structures (DS1 and DS2 and DS3).

due to prefetching. Demand fetches and prefetches are often overlapped by

the memory system in 3 applications: 188.ammp, 300.twolf, and sphinx.

These drawbacks have a single basic cause: pure miss counts are often
poorly correlated with performance in modern systems because of the com-
plexity of queueing and scheduling decisions between multiple misses in the
memory hierarchy. Instead, our metric of choice is more immediate: time
spent stalling due to memory latency. As described in Section 3.7, we track
cycles that the pipeline commits no instructions, assigning blame to the data

structure of the load at the head of the reorder buffer.

Figure 7.3 breaks down the effect of TwoStep prefetching on stall cy-
cles for 3 major data structures in our applications. TwoStep consistently
reduces stall cycles across a wide variety of benchmarks and access patterns.

The greatest reductions occur in memory intensive applications with irregular
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Figure 7.4: Comparing prefetch techniques

access patterns — 181.mcf, 300.twolf and sphinx. Lower-magnitude reductions
can be seen for 183.equake (regular but memory-intensive) and 188.ammp (ir-
regular but with lower cache miss-rates). The combination of the reductions
in stall cycles and the fraction of useful prefetches shows that TwoStep is suc-
cessful in its core design goal: prefetching a wide variety of access patterns. It
also serves to highlight the applications where we do better than others. We

explore this question further in the next section.

7.2 Comparing prior approaches

As described in Chapter 5, Figure 7.4 shows the aggregate speedups of
TwoStep for our applications relative to a baseline with no prefetching. We also
compare TwoStep with one short-range and two prior long-range prefetching
techniques — Tagged Prefetching, Scheduled Region Prefetching (SRP) [55]
and Guided Region Prefetching (GRP) [98], respectively. Tagged prefetch is
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an example of a common category of simple hardware prefetching included in
many production microprocessors. It prefetches the next cache-line on an L2
cache miss, marks cache-lines so prefetches using an extra bit, and continues
to prefetch cache-lines and set their bits on the first use of a prefetched cache-
line. This approach allows limited lookahead and concomitant improvement
for simple spatial patterns, but fails to improve less regular applications. Our

results confirm this.

SRP uses the L2 prefetch controller to trigger spatial prefetches in
an aligned 4KB region on encountering L2 misses, taking care to prioritize
demand fetches and prefetches of different regions and bounding the pollution
in the L2 due to useless regions when the application has no spatial locality.
GRP is a descendant of SRP that performs aggressive compiler analysis to
augment important loads in the application with prefetch hints. The prefetch
controller in GRP also performs content-based pointer prefetching that allows
it to run ahead of the application by a statically bounded number of iterations.
In spite of its support for various kinds of pointer-based prefetching, GRP’s
results are similar to those of SRP, getting most benefit from spatial access
patterns but with greatly improved prefetch accuracy and greatly reduced
memory traffic relative to SRP. All three sets of results use a common Rambus
model. However, GRP uses different compiler and simulator infrastructure and

is therefore measured against its own baseline.

TwoStep outperforms GRP and SRP on the 4 most irregular applica-

tions: 300.twolf, sphinx, 175.vpr and 188.ammp. Speedups are bounded by the
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memory intensiveness of the application; 175.vpr and 188.ammp have fairly low
miss-rates. Another memory-intensive application with irregular access pat-
terns is 181.mcf, and TwoStep provides significant speedups that are nearly
identical to the prior techniques. However, SRP and GRP improve 181.mcf
only due to accidental spatial locality in its layout; allocation and access follow
the same path through the data structure. We believe the use of 181.mcf’s sim-
plex algorithm in a more general graph-optimization application with multiple
possible paths of access would not attain this level of spatial locality, making

TwoStep more effective in comparison.

Figure 7.4 also highlights the areas where TwoStep is not as effective
as prior approaches. 179.art and 183.equake are regular applications that SRP
and GRP are able to significantly speed up. TwoStep also shows speedups for
them, but the speedups are not as significant. This lack of improvement arises
because the precomputation approach forces TwoStep to serialize prefetches
where approaches tuned for just spatial locality can issue multiple prefetches
in parallel taking advantage of all available prefetch bandwidth. The effect of
this parallel bandwidth depends on the relative quantities of computation per
memory access in an application; thus the difference is widest for 179.art which
spends nearly 90% of its time in extremely tight loops with 2-6 instructions
of computation per memory access. 183.equake has more computation per
memory access, concomitantly improving the effectiveness of TwoStep. We

now support this reasoning in a microbenchmark study.
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class Object: // Size: one cache-line
Object* next[4]
int x[4] // Padding

Object f[0OBJECTS] // Size: 10x L2 capacity
// Each element’s next pointers
// initialized randomly.
Object* currObj = £

Archetype (regularity, computation):
do 100-regularity times:
do computation times:
sum = (sum + currObj->value)’8
currObj = curr0Obj->next[i%4]

do regularity times:
do computation times:
sum = (sum + currObj->value)8
++curr0bj

Figure 7.5: The Archetype microbenchmark for exploring the application cov-
erage of different prefetch schemes

7.3 Microbenchmark study: The space of application
behavior
This section presents our coverage study to show that TwoStep is more
broadly-applicable than prior approaches. We describe a simple microbench-
mark that allows us to tune two significant application features - the compute
vs memory-access ratio (computation) and the fraction of regular vs irregu-
lar and hard-to-predict memory accesses in the dynamic address stream seen

by the memory hierarchy (regularity). We design our microbenchmark to
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Figure 7.6: The coverage of GRP by iterations of computation per object
accessed, and by regularity (both variables from Figure 7.5). GRP is biased
towards the regular side of the space.

exaggerate the contrast between extremely regular and extremely irregular ac-
cess. Figure 7.5 shows the basic structure of our Archetype microbenchmark.
Archetype consists of a large array of objects an order of magnitude larger
than L2 capacity and a series of traversals over it of variable regularity. To
eliminate intra-object misses, each object in the array is aligned and sized
to fit exactly in an L1/L2 cache-line. Each object contains pointers that are
initialized to point to four other objects in the array chosen at random. Each
iteration/call to Archetype now traverses the array in a combination of first
completely irregular pointer-based access and then completely regular stride-1
access with good spatial locality. Rather than try to enumerate the space of
possible access patterns and object sizes we select these two types of access
with extreme cache behavior and study the effect of their relative weight on

different types of prefetching.

Given the Archetype microbenchmark we can now explore the speedups
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yielded by different prefetch schemes for different values of regularity and
computation. These speedups may be summarized in the form illustrated in
Figure 7.6. This graph shows speedups for 5 groups of bars corresponding to
different values of regularity on the x-axis, so that the set of bars at 100
have perfectly spatial access patterns while those at 0 have no spatial access.
Within each group of bars we vary computation, the amount of computation

per memory access.

Figure 7.6 exhibits several distinct regions. First, areas with low values
of computation per object (left-most bars in each group) present little oppor-
tunity for overlapping latency and GRP (not unlike other prior schemes) fails
to provide speedup. Second, as we increase computation to extremely high
levels (right-most bars in each group), Archetype enters the space of compute-
bound applications. Again, speedup due to prefetching is limited in this case.
Between these two extremes lie the range of values for computation where
prefetching can potentially provide speedups. SRP and GRP only improve
the regular side of this space, gradually decreasing speedups as Archetype ac-
cesses memory more irregularly in the groups on the left. This result is in
agreement with findings of the original study; limitations in prioritizing be-
tween pointers and a hard limit on the slack available to the prefetcher are the
major bottlenecks in improving irregular applications. The major improve-
ment of GRP over SRP is reduced memory traffic due to compiler hints that

suppress useless region prefetches.

Unlike SRP and GRP, TwoStep (Figure 7.7) improves both the regular
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Figure 7.7: The coverage of TwoStep by iterations of computation per object
accessed, and by regularity (both variables from Figure 7.5). Both regular
and irregular applications now benefit from prefetching.

and irregular sides of the space, so that each group of bars shows significant
speedups for some level of computation. There are two important secondary
effects. First, the serialization of precomputation causes TwoStep to need
more computation per memory-access to show speedups. We disabled our
compiler’s density checks to force it to prefetch at all levels of computation,
and this causes significant slowdowns for tight loops. In practice our compiler
simply excludes such loops from TwoStep prefetching. Comparing the regular
side of Figures 7.6 and 7.7 also shows this effect — at 100% regular access, GRP

shows the most speedup at a lower level of computation than TwoStep does.

Second, greater breadth in the application space is offset by degrada-
tion at some individual points in the space relative to SRP and GRP. As the
speedup distribution graphs show, SRP and GRP usually have 1-2 points in

the space with substantially higher speedup than TwoStep can manage.
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Figure 7.8: Combining SRP with TwoStep gives the best of both worlds.

Summary: In this section, we presented a novel method to study the cov-
erage of a prefetch scheme in the space of applications. Varying application
behavior rather than parameters of the system it runs on is a relatively under-
studied technique for highlighting the advantages and constituencies of differ-
ent schemes. Our results show that TwoStep provides substantially greater
breadth in the types of applications it can improve, at the cost of reduced
speedups in the portion of the space that prior approaches have traditionally
targetted. They also highlight the complementary strengths and weaknesses
of history- and precomputation-based prefetching approaches: the former ex-
ploits prefetch bandwidth but requires address regularity; the latter exploits

complex access patterns but requires more computation per memory access.

7.4 Combining history- and precomputation-based prefetch-
ing

The insight that history- and precomputation-based prefetching are
complementary raises the possibility of combining them to get the best of

both worlds. To explore this possibility we enhance the L2 prefetch controller
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to perform strided region prefetching when the TwoStep precomputation en-
gine is disabled. Just like in SRP, region prefetches are scheduled with lower
priority than demand fetches or the more accurate TwoStep prefetches, and
are prefetched into the LRU way of the L2 cache without being pushed onto
the FIFO. Figure 7.8 summarizes our results, extending the comparison in Sec-
tion 7.2 with a new bar for our combined prefetching approach. As this Figure
shows, combining TwoStep with region prefetching gives us the best of both
worlds, providing the accuracy of precomputation-based prefetching in the ex-
tremely irregular applications that require it, and providing the bandwidth
utilization of region prefetching in loops too dense for the TwoStep compiler
to precompute for, and also in the rare cases of the prefetch thread falling

behind the main thread and giving up in regular applications.

Using region prefetching without the compiler hints of GRP causes in-
creased bandwidth requirements just like SRP. In principle it should be possi-
ble to add GRP’s compiler analyses and hints to the TwoStep compiler, though
they are currently implemented in separate compiler frameworks (Scale and C-
Breeze, respectively). Combining spatial prefetch with TwoStep requires good
pollution control and prioritization to manage low spatial prefetch accuracy.
This is confirmed by experiments combining tagged prefetch with TwoStep,
which show significant conflict between the two approaches and no speedups

for irregular applications.

Having completed our comparison and synthesis of precomputation-

and history-based prefetching approaches, we now conclude our evaluation
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Figure 7.9: How TwoStep’s speedups scale with growing memory latency.

with a series of sensitivity studies to study the effect of different system pa-

rameters on TwoStep’s performance.

7.5 Effect of main-memory latency on prefetch effec-

tiveness

An important question when studying speedups due to prefetching is
how these speedups change as we increase latency to main memory. Figure 7.9
answers this question. For each application, the left-most bar shows the base-
line RDRAM model used in the rest of this thesis, with RDRAM clocked at
a cycle ratio of 4 relative to processor frequency. We model increasing laten-
cies to main memory by changing just this cycle ratio without adjusting the
relative times spent by each DRAM access in its different constituent phases:

precharge, activation, the read/write itself, and queuing delay.

Figure 7.9 shows that increasing main-memory latencies reduces the
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Figure 7.10: How GRP’s speedups scale with growing memory latency.

speedup due to prefetching very slightly. For example, 300.twolf’s speedup goes
from 9.0% to 8.0% over a factor of 8 increase in RDRAM latency (average read
latency increases from 92.5 to 742 cycles). Over the same space IPC drops by
a factor of 4 from 0.66 to 0.15. This may seem implausible at first; as DRAM
latencies grow we would expect the processor to be able to overlap less and less
of the large latency by prefetching. To explain why this is not the case, we focus
on the dependence structure of our programs. As DRAM latency increases, it
becomes the primary factor deciding IPC. Since the dependence chains in an
application are constant as DRAM latencies grow, the number of instructions
that can execute overlapping with each dynamic DRAM access will tend to
stay constant. Similarly, any prefetches issued will start at approximately the
same instruction. Since main memory bandwidth is likely to be relatively
highly utilized, the limited lookahead window in the out-of-order processor

means that as we increase memory latency the ratio of RDRAM accesses to
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Figure 7.11: Sensitivity of TwoStep’s speedups to FIFO capacity.

instructions committed remains the same. As a result the speedup due to

prefetching is also largely maintained.

Figure 7.10 shows the corresponding figure for GRP rather than TwoStep;
once again increasing memory latency has only a slight effect on prefetching ef-
fectiveness. In the case of 183.equake it even causes speedup to increase slightly
up to a cycle ratio of 16 before tapering off. This is explained by the relatively
high fraction of unutilized memory bandwidth for 183.equake at our baseline
DRAM latency. As a result, it requires DRAM latencies to grow by a factor of
4 before memory bandwidth is nearly fully utilized. At that point the sequen-
tialization between memory accesses kicks in as described above, and speedups
stay largely constant past that point. Speedups due to precomputation-based
prefetching are more likely to have larger dropoffs with increasing memory

latency because of the increased sequentialization of accesses.
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Figure 7.12: Sensitivity of TwoStep’s speedups to latency of the first cache-line
on a pull. Subsequent cache-lines arrive 1 cycle apart. Further increases in
latency do not cause more dropoff; the rightmost bar for each group measures
the speedup due to prefetching to L2 rather than DLI.

7.6 Sensitivity studies

The TwoStep design has two major parameters - FIFO capacity and
pull latency - that must be realistic in order for it to be feasible. We now eval-
uate its sensitivity to these parameters. Figure 7.11 summarizes the speedups
obtained by TwoStep for our applications and the sensitivity of these improve-
ments to FIFO capacity. A 2KB (32-entry) FIFO suffices to provide most of
the benefit of an infinite-capacity FIFO, indicating the effectiveness of the

FIFO at realistic capacities for current technologies [2].

Figure 7.12 shows the effect of pull latency on TwoStep’s speedups. We
vary the latency of transfer of the first cache-line from FIFO to DL1, assuming
pipelining allows subsequent cache-lines for each pull to arrive 1 cycle apart at

the DL1. We find that across all our applications a 4-cycle pull latency gives
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us the same speedups as a 1-cycle latency.

Increasing the latency to 16 cycles or more causes demand fetches to
hit in the L2 before the pull arrives in the DL1. The right-most bar in Fig-
ure 7.12 is thus a good indication of the relative benefit of TwoStep prefetching
to the L2 and DL1 for our applications. Different applications benefit from
prefetching to the DL1 to varying degrees, with memory-intensive applications
like 181.mcf and 300.twolf getting most of their benefit from accurate prefetch
to the L2, while regular applications like 179.art and 183.equake also benefit

significantly from the pulls to the DL1.

7.7 Summary

This chapter presented a detailed evaluation of the entire TwoStep mi-
croarchitecture and compiler toolchain described in the previous two chapters.
We have shown that TwoStep prefetching provides cycle-time reductions across
all the applications we evaluated on relative to a baseline with no prefetch-
ing. Analyzing the results further, we find uniformly substantial accuracies,
but wide variance in prefetch coverage, especially for tight loops and regu-
lar programs. While irregular applications are uniformly improved relative to
GRP, regular applications often do significantly better with prior approaches.
We explore why and show that the need to serialize dependent prefetches is
a disadvantage for TwoStep when running such applications. More generally,
precomputation- and history-based prefetching are complementary approaches

and we identify the precise application characteristics that determine applica-
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tion affinity to one or the other.
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Chapter 8

Conclusions

Prefetching is an attractive solution to growing memory latencies. Un-
fortunately, implementing prefetching well has been a challenge for modern
systems researchers, largely because of the wide variety of application behav-
ior seen by modern computer systems. Every prefetching system must make
decisions on what to prefetch, when to prefetch it, and where to prefetch it
to. It must make a high volume of these decisions without adding too much
overhead. In this study we have highlighted the subtleties in making these
decisions and the many ways that a mechanism that improves one decision for
one set of applications may degrade the quality of another decision for a differ-
ent set. One major such tension is between history- and precomputation-based
approaches for deciding what to prefetch. Using past history utilizes prefetch
bandwidth more efficiently and makes timing decisions easier, but may yield
low-accuracy prefetches for complex irregular applications. Using precomputa-
tion guarantees accurate prefetches, but serial dependences between prefetches
worsen the problem of timing prefetches. In this dissertation we addressed

these interacting problems.
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8.1 Summary of contributions

The major theme in this dissertation has been that the chaotic be-
havior of large applications is an artifact of insufficient analysis, and can be
decomposed into more regularly-behaved components. We began by decom-
posing the address streams of applications by data structure and phase, and
by showing that this process can give insight into each application’s behavior
and yield a symbolic access pattern for the major loops in an application. As
applications grow more complex, general-purpose processors must be increas-
ingly proactive in adapting to their changing needs over time. Data structures
and loops are ideal high-level structures for designers to focus on in order to

gain insight.

DTrack, our tool for data structure decomposition, highlighted the wide
variety of behaviors in modern applications. Of the 8 applications we studied,
5 contribute 90% of their cache misses in just three data structures, while the
other 3 can take as many as 100 data structures. While the phase transi-
tions in our applications occur at the same points across all data structures,
the behavior of different data structures and phases is widely variable. Our
applications benefit from an application-specific sampling period at which to
perform phase analysis. Combining phase and data structure profiles yields
distilled summaries of the dominant access patterns in our applications, and
highlights the first access to an object in a loop iteration as the most frequent
cause of cache misses. Loop iteration footprints are tiny relative to cache

capacities, allowing us to aggressively tune for these first object accesses.
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We then used our understanding of these major loops to understand the
drawbacks of prior prefetch approaches, and to design a prefetch scheme that
addresses these drawbacks by orchestrating cache-lines into the level-1 data
(DL1) cache in units of a loop iteration. TwoStep leverages modern compiler
techniques to provide the memory hierarchy with a distilled picture of the
application’s access patterns. Prefetches originate in the level-2 (L2) cache to
minimize address traffic and latency between dependent prefetches. Decisions
of what to prefetch next are decoupled from when to prefetch. A FIFO between
L2 and DLI1 provides both a low-overhead flow-control mechanism that allows
the rest of the system to largely ignore the possibility of pollution, and also
prefetches data to the DL1 right before its use. We find these mechanisms to

work harmoniously together.

The goal had been for this dissertation to provide a single set of mech-
anisms that are effective for the large variety of access patterns seen in the
wild. From that perspective our results have been mixed. TwoStep works
well for programs with irregular access patterns and reasonable levels of com-
putation per memory access. While these criteria seem reasonable, finding
benchmarks that fit them has been difficult, especially when coupled with
toolchain-imposed constraints — we require C sources and our compiler over-
heads precluded running 3 SPEC2000 benchmarks. While we successfully
improve irregular programs over prior work, our improvements for regular ap-
plications are lower than competing approaches. Understanding why this is

so is one of the contributions of this dissertation: precomputation imposes
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an ordering on prefetches and so is unable to fully utilize available prefetch
bandwidth. Rather than a technique that subsumes prior approaches, we have
ended up with an understanding of the complementary strengths of our ap-

proach and prior techniques.

Prefetching can either look back at past history or look forward by
precomputing an application’s future requirements. We have quantified the
complementary advantages of these techniques into two application-level prop-
erties. Applications with a low compute-access ratio can benefit from history-
based prefetching if their access pattern is not too irregular. Applications with
irregular access patterns are likely to require precomputation-based prefetch-
ing, as long as their compute-access ratio is not too low. If the reader remem-

bers one fact from this dissertation, we recommend this one.

TwoStep is an elaborate system requiring profiling, whole-program
analysis, ISA modifications and microarchitectural changes. Over the bench-
marks we evaluated TwoStep over, the average improvement relative to prior
approaches like SRP is insufficient to justify including the additional complex-
ity of TwoStep in a production design. However, I believe future trends will
make TwoStep more broadly applicable. As computers have become cheaper
and more accessible the trend in the last 30 years has been for applications to
grow more diverse (with new categories like streaming media and personal pro-
ductivity), more complex (word processors check grammar and also perform
speech recognition and synthesis) and more memory-intensive. These trends

are likely to continue in future: the number of applications running concur-
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rently on a system, the variety of applications, and the variety of phase behav-
iors in an application are all likely to increase. Applications that stream media
but perform non-trivial computations in each iteration, such as speech recog-
nition’s beam search, are prime candidates for precomputation-based prefetch-

ing.

8.2 The roads not taken: Challenges for future work

When starting out, my goal was to explore ways in which the hardware-
software stack could be designed to be more responsive to the needs of individ-
ual applications, and to determine the effectiveness of this approach in reducing
the time taken to run different types of applications. Implications of this ap-
proach are that both hardware and software may need to change, and that the
interface between the two could benefit from greater richness. In the process
of writing this dissertation I have made many choices of avenues to pursue.
While we have used the insights yielded by DTrack to improve prefetching,
there are many alternative applications to these insights along three broad
areas: improving static application layout, improving cache replacement, and

improving scheduling of data movement into the caches.

Improving data layout: An application’s data layout can be improved
in two ways: either by improving heap allocators or by providing multiple
address mappings for individual memory locations like the Impulse memory

controller [14]. One interesting approach to improve an application’s data lay-
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out is to provide not one version of malloc but multiple versions tuned for
different types of access patterns, relying on compiler support to replace calls
to malloc() in the application with an appropriate specialization. The most
similar study to this in the literature is by Wilson et al. [101]. This approach
is however limited to applications that rarely update their data structures;
applications that update their data structures at even a low rate end up with
a random data layout if they run long enough. Applications without updates
to the dominant data structures will benefit from this approach; our compiler
implementation shows, in combination with previous work, that determining
access patterns statically is feasible. The open problem is translating access
patterns into a taxonomy of allocation policies. We didn’t have access to a
broad enough range of applications to attempt such a taxonomy. Static allo-
cation policies to address the most frequent access patterns are also synergistic
with multiple address mappings to take less frequent access patterns into ac-

count.

Improving cache replacement: The second category of optimizations con-
sists of ways to improve cache replacement. Cache replacement can be im-
proved either by more adaptive policies [74, 81] or by more sophisticated cache
partitioning. While both approaches have been tried in the past, a promising
line of attack in either category is to explore in this context the potential of an
online system to associate data structure categories with individual memory

addresses. Creating a more coarse-grained form of DTrack analysis that can be
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performed online with low overhead could help improve cache bypassing and
dead-block prediction decisions for either performance improvement or power
reduction. A potential further refinement is to bind specific cache partitions to
sets of data structures. Especially in combination with reconfigurable caches,

this approach may help avoid conflict between data structures.

Improvements to prefetching: TwoStep prefetching can be improved in
several ways. We outline three major ideas. First, TwoStep has lower speedups
than region prefetching for extremely regular applications. We have shown
that TwoStep and SRP can be combined without conflict to get the best of
both worlds. This solution however suffers from the potential low accuracy and
increased bandwidth requirements of SRP. Combination with GRP has been
shown to be feasible, but compiler support for such a combination remains
to be implemented. A second way to address regular/spatial applications is
to use multiple prefetch threads like Kim and Yeung [47]. In the context of
TwoStep, this will require the compiler to generate multiple versions for each
prefetch kernel: one to perform the in-order pushes to the FIFO from the
L2, and another in potentially multiple instances to run ahead and prefetch
multiple iterations of a loop in parallel. Third, the TwoStep compiler cur-
rently emits extremely unoptimized code to run on the L2 controller. While
our applications have shown no benefit from optimizing further, it is possible
that new applications will be able to tolerate lower ratios of computation per

memory access with more optimized prefetch kernels. Each of these is — in
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descending order of promise — a potential source of future improvement to

prefetching for irregular and regular programs alike.

Nonetheless, this dissertation has articulated a new approach: of ex-
ploring the feasibility of dynamic adaptation using a richer interface between
hardware and software, and of using dynamic adaptation to address more com-
plex applications than have heretofore been taken into consideration in system
design. While the implementation can be improved, fine-grained orchestration
and data cache management is a valid and complementary approach to prior

approaches that maximize prefetch bandwidth utilization.
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Appendix

The figures in the following pages show, for each of the major data
structures in our applications, the raw time-varying data every 50 million
cycles for DL1 accesses, DL1 misses (L2 accesses), and L2 misses. We provide
an overview of these figures, enumerating for each application the dominant
data structures in terms of total cache misses and their access pattern. For

more data on these data structures, consult Tables 3.3-3.5.
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Benchmark Data structure Access pattern
164.gzip window Regular
prev Regular
inbuf Regular
fd Regular
175.vpr node Regular
heap Irregular
node_route_inf Irregular
linked f ptr Irregular
177.mesa Image Regular
Depth Regular
Vertex Regular
Normal Regular
179.art f1 layer Regular
tds Regular
bus Regular
181.mcf nodes Irregular
arcs Irregular
perm Regular
basket Regular
183.equake K[][] Regular
disp(] Regular
K[] Regular
K Regular
188.ammp  atom Irregular
nodelist Regular
atomlist Regular
vector Regular
256.bzip2 block Irregular
quadrant Irregular
zptr Irregular
300.twolf netarray[] —netptr Irregular
tmp_rows [] Irregular
rows [] Irregular
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