
CopyrightbyKartik Kandadai Agaram2007

The Dissertation Committee for Kartik Kandadai Agaram
erti�es that this is the approved version of the following dissertation:
Prefet
h Me
hanisms by Appli
ation Memory A

essPattern

Committee:Stephen W. Ke
kler, SupervisorKathryn M
KinleyCalvin LinDoug BurgerKemal Eb
ioglu

Prefet
h Me
hanisms by Appli
ation Memory A

essPattern
byKartik Kandadai Agaram, B.E.; M.S.

DISSERTATIONPresented to the Fa
ulty of the Graduate S
hool ofThe University of Texas at Austinin Partial Ful�llmentof the Requirementsfor the Degree ofDOCTOR OF PHILOSOPHY
THE UNIVERSITY OF TEXAS AT AUSTINMay 2007

A
knowledgments\Su

ess is the ability to go from one failure to another with no loss of enthusiasm."{Winston Chur
hillIt takes many to sustain enthusiasm for so long. I am deeply indebted to mymentor, advisor, and guide, Professor Stephen W. Ke
kler. From my �rst dayat UT, Steve has provided
onstant en
ouragement along with the o

asionalpush when I was distra
ted or derailed. I would like to follow the example hesets everyday; I am not there yet.Great thanks go to my
ollaborators. Professor Kathryn S. M
Kinleybroadened my horizons immeasurably by always having the right paper forme to read at ea
h point in my journey. Dr. Kemal Eb
ioglu taught memu
h about rigorous thinking over numerous hours at the whiteboard; laterhe showed faith in me when I had none. Professors Doug Burger and CalvinLin gave generously of their expertise over numerous meetings. In parti
ular, Itake from them lessons on the importan
e of maintaining a
onsistent interfa
eto the world, and on the
raft of writing
learly.Conversations were one of my
onstant delights over the years of grad-uate s
hool. My
olleagues in the CART lab were responsible for most ofthem, and I am indebted to them for their
onstant feedba
k on my writingand my presentation. M. S. Hrishikesh and Simha Sethumadhavan toleratediv

me as a roommate; they
ontributed greatly to the immersiveness of my grad-uate s
hool experien
e. Heather Hanson was always there when I needed ahand, and I appre
iate our many heart-to-hearts about the Ph.D. pro
ess. Ilearnt mu
h about the
raft of
ritiquing and evaluating resear
h by pra
ti
ingopinions around Karu Sankaralingam, Vikas Agarwal, Sadia Sharif, RamadassNagarajan, Paul Gratz, Boris Grot, Changkyu Kim, Raj Desikan, Madhu Sar-avana Sibi Govindan, Suriya Subramanian, Nitya Ranganathan, and MadhaviKrishnan. The opinions I have left today are the ones that survived them.A resear
h group is only as e�e
tive as the department and supportstru
ture it is immersed in. I would like to thank Gem Naivar, Flet
her Mat-tox, and the rest of the sta� at UTCS for shielding us from the inevitablebureau
ra
y, and for being there for us above and beyond any reasonable ex-pe
tation. I am very grateful to all the Fa
ulty members I did my
ourseworkwith. In parti
ular, Professor Gordon Novak's
ourse on AI in my very �rstsemester at UT left a deep impression on me, as did Professor J Moore's
ourseon the relationship between re
ursion and indu
tion. In my time here I hadalso the pleasure to wat
h a publi
 but friendly duel on religion by ProfessorsBenjamin Kuipers and Raymond Mooney; it
aused me to start thinking aboutthe broader
ontext that resear
h is done in within a so
iety. The amazinglibraries here at UT helped to fuel that spark.The graduate students in the broader department helped to leaven andbroaden my years here. Maria Jump was always around in the early mornings;on the few o

asions I was up at that time her presen
e never failed to makev

things better. In addition to all her other feedba
k and support, I will alwaysbe grateful to Alison Norman for a
ertain phone
all at just the right moment.I wouldn't be here without her. The so
ial life in the department was a ri
hsour
e of sustenan
e, espe
ially with Mi
hael Bond, Jennifer Sartor, Serita Ne-lesen, Nedialko Dimitrov, Walter Chang, Benjamin Wiedermann, and MilindKulkarni. Above all, I have been fortunate to have found the best of friendsduring my stay in Austin, espe
ially Markus Fitza, Ro
io O
on-Garrido, VijaySubramaniam, Jyothy Potluri, Reetu Naik, Varun Mehta, Neha Verma, Ju-lia Kays, Kavita Agrawal, Ashwini Gopal, Anupama Madabhushi, and UmaBhat. You have helped more than you know.The enthusiasm everyone here has helped to sustain was
reated in thebosom of a large and very
omfortable family. My parents, Mythili and A.K. Srinivasan, in
uen
ed me in ways no
hild
ould have noti
ed; I
onstantlydis
over new details of subtlety in the wisdom with whi
h they raised me. Mybrother, Srikanth Agaram, shared my formative years. His reti
ent presen
ewas immense. My sister, Vinodhini Krishnan, has seen me at my best andmy worst, and loved me yet. As I grow up my relationship with them all hasmatured into an irrepla
eable sour
e of
onversation and more. My grandfa-ther, A. K. Rangaraj, was always around in spirit, espe
ially everytime I raninto a book of his around the house. My grandmothers, Pushpa Venugopaland Anusuya Rangaraj, were a pre
ious sour
e of support in an otherwise verymale household. These are but the tip of the i
eberg; I have been fortunate atevery stage of my life to have had some warm sour
e of family around me. Invi

parti
ular, everybody at 45 who wat
hed over me as I grew up over the years,and my parents away from home: Vimala and S. Krishnan, Vijayalakshmiand V. Gopalan, Samyukta and Ramprasad Kandadai, and Kamala and A. K.Sampath. The stressful times when I feel out on a limb are sustained by theyears of shelter provided by you all.I have always needed role models. Before them all was my grandfather,K. Venugopal. I have always looked up to him and marvelled at his strength.When I
ould �nally mat
h him for height I realized I had mat
hed but themost super�
ial of his attributes. I never had the honour to meet ProfessorEdsger W. Dijkstra. He sits at my shoulder when I program.Writing these a
knowledgments has been a surprisingly valuable oppor-tunity to take sto
k of the lessons I have learnt over the years. For this I amdoubly grateful to you all. My a

omplishments are all yours; I have been buta
atalyst.

vii

Prefet
h Me
hanisms by Appli
ation Memory A

essPatternPubli
ation No.Kartik Kandadai Agaram, Ph.D.The University of Texas at Austin, 2007Supervisor: Stephen W. Ke
kler
Modern
omputer systems spend a substantial fra
tion of their running timewaiting for data from memory. While prefet
hing has been a promising avenueof resear
h for redu
ing and tolerating laten
ies to memory, it has also been a
hallenge to implement. This
hallenge exists largely be
ause of the growing
omplexity of memory hierar
hies and the wide variety of appli
ation behav-iors. In this dissertation we propose a new methodology that emphasizes de-
omposing
omplex behavior at the appli
ation level into regular
omponentsthat are intelligible at a high level to the ar
hite
t.This dissertation is divided into three stages. In the �rst, we buildtools to help de
ompose appli
ation behavior by data stru
ture and phase,and use these tools to
reate a ri
her pi
ture of appli
ation behavior than with
onventional simulation tools, yielding
ompressed summaries of dominantviii

a

ess patterns. The variety of a

ess patterns drives the next stage: designof a prefet
h system that improves on the state of the art.Every prefet
hing system must make low-overhead de
isions on whatto prefet
h, when to prefet
h it, and where to store prefet
hed data. Visualiz-ing appli
ation a

ess patterns allows us to arti
ulate the subtleties in makingthese de
isions and the many ways that a me
hanism that improves one de-
ision for one set of appli
ations may degrade the quality of another de
isionfor a di�erent set. Our insights lead us to a new system
alled TwoStep witha small set of independent but synergisti
 me
hanisms.In the third stage we perform a detailed evaluation of TwoStep. We�nd that while it outperforms past approa
hes for the most irregular appli
a-tions in our ben
hmark suite, it is unable to improve on the speedups for moreregular appli
ations. Understanding why leads to an improved understandingof two general
ategories of prefet
h te
hniques. Prefet
hing
an either lookba
k at past history or look forward by pre
omputing an appli
ation's futurerequirements. Appli
ations with a low
ompute-a

ess ratio
an bene�t fromhistory-based prefet
hing if their a

ess pattern is not too irregular. Appli
a-tions with irregular a

ess patterns may bene�t from pre
omputation-basedprefet
hing, as long as their
ompute-a

ess ratio is not too low.
ix

Table of ContentsA
knowledgments ivAbstra
t viiiList of Figures xiiiList of Tables xviiiChapter 1. Introdu
tion 11.1 Detailed appli
ation
hara
terization: data stru
tures andphases . 31.2 Summary of prior approa
hes 61.3 TwoStep: Mi
roar
hite
ture and
ompiler forpre
omputation-based prefet
hing 91.4 Dissertation organization and
ontributions 13Chapter 2. Ba
kground and related work 152.1 Visualizing appli
ation memory behavior 152.2 Analyzing time-varying behavior 162.3 Prefet
hing . 182.4 Sli
ing and whole-program analysis 252.5 Compiler support for pre
omputation 26Chapter 3. Data stru
ture de
omposition using DTra
k 273.1 DTra
k: A tool for studying irregular appli
ations 273.2 Design de
isions . 283.3 Methodology: Ben
hmarks, inputs and simulation periods . 323.4 Results: Data pro�les and distributions 363.5 Data stru
ture details . 38x

3.6 Data stru
ture a

ess patterns 403.7 Case study: Data stru
ture
riti
ality 433.8 Case study: Competition for
a
hes 463.9 Summary . 48Chapter 4. Phase analysis 504.1 Analyzing phase behavior by data stru
ture 524.2 Sampling period sele
tion: Overview 534.3 Sampling period sele
tion: The volatility metri
 554.4 Sampling period sele
tion: Volatility pro�les 604.5 Results: Volatility pro�les 614.6 Explaining and handling non-monotoni
 volatility pro�les . . 624.7 Results: Phase behavior at a good sampling period 674.8 Results: Translating phase behavior into a

ess patterns . . 694.9 Summary . 71Chapter 5. TwoStep: Pre
omputation-based prefet
hing withlightweight throttling 735.1 Drawba
ks in past approa
hes 745.2 An overview of TwoStep . 765.3 The prefet
h
ontroller . 795.4 Flow
ontrol: pull and next 835.5 Maintaining
oheren
e . 865.6 Initializing registers before kernel exe
ution 875.7 Intera
tions between pulls and sto
k
ompilers 885.8 Experimental Methodology 895.9 Preliminary evaluation with hand-
rafted prefet
h kernels . . 935.10 Summary . 101Chapter 6. Compiler support for TwoStep 1026.1 Goals and requirements . 1056.2 Analyzing the appli
ation by loop
luster 1066.3 From loop
luster to prefet
h kernel 109xi

6.4 Sele
ting a good sli
e for a �xed
luster 1146.5 Evaluating the sli
es generated by the
ompiler 1176.6 Dis
ussion: TwoStep vs prior pre
omputation
ompilers . . . 1266.7 Summary . 129Chapter 7. Evaluating TwoStep 1317.1 The e�e
tiveness of TwoStep prefet
hing 1327.2 Comparing prior approa
hes 1367.3 Mi
roben
hmark study: The spa
e of appli
ation behavior . 1397.4 Combining history- and pre
omputation-based prefet
hing . 1437.5 E�e
t of main-memory laten
y on prefet
h e�e
tiveness . . . 1457.6 Sensitivity studies . 1487.7 Summary . 149Chapter 8. Con
lusions 1518.1 Summary of
ontributions 1528.2 The roads not taken: Challenges for future work 155Appendix 159Bibliography 197Vita 215

xii

List of Figures1.1 DTra
k tool
hain . 31.2 A

ess patterns of major loops: the sequen
e of obje
ts tou
hedin ea
h iteration. The expression outside the body shows howthe indu
tion variable
hanges for ea
h loop (DFS denotes depth-�rst traversal); the body enumerates important loads dependenton the indu
tion variable. 51.3 The TwoStep prefet
hing system 93.1 DTra
k tool
hain . 273.2 De
omposition of DL1 misses and a

esses by data stru
ture.L2 misses show similar trends to DL1 misses. 353.3 Case study: Sequen
e of obje
ts tou
hed by one of the mainloops in twolf. Size of ea
h obje
t in
omments. 413.4 De
omposition of DL1 and L2 miss-rates by data stru
ture. Theaggregate miss-rate for ea
h appli
ation is denoted by a hori-zontal line. 443.5 Breakdown of premature evi
tions. Useful data is only infre-quently evi
ted by a di�erent (di�) data stru
ture. 474.1 Just tra
king total misses
an miss interesting e�e
ts. DL1
a
he misses in aggregate and by data stru
ture in 188.ammp. 524.2 Sele
ting a sampling period, step 1: Phase behavior
urves
or-responding to a stream (183.equake) at di�erent sampling peri-ods. The
hallenge is to sele
t a sampling period that is neithertoo noisy (a) nor over-damped (
), but just right (b). 544.3 Sele
ting a sampling period, step 2: Corresponding point volatil-ities for ea
h point in the graphs of Figure 4.2. 574.4 Property of a good volatility metri
: both these
urves shouldhave the same volatility, as an indi
ation of how mu
h noiseis added by the
ommon transitions, while ignoring the raretransitions. 584.5 Sele
ting a sampling period, step 3: Sort the point volatilitiesfor ea
h graph in Figure 4.3. The volatility of the
urve isde�ned as the point volatility at the 90th per
entile. 59xiii

4.6 The volatility pro�le for the data stru
ture inbuf in 164.gzip,showing volatilities for
urves aggregating from 1 to 500 million
y
les worth of DL1
a
he misses together. 604.7 Volatility pro�les of some major data stru
tures in our appli-
ations (left), and the
orresponding phase behavior (right) atone low-volatility sampling period in the pro�le (spe
i�ed aboveea
h right-hand graph). 634.8 Volatility pro�les of some major data stru
tures in our appli-
ations (left), and the
orresponding phase behavior (right) atone low-volatility sampling period in the pro�le (spe
i�ed aboveea
h right-hand graph). 644.9 The phase behavior of 177.mesa at 10 million
y
les. Comparewith Figure 4.7
. 654.10 Appli
ations with inversion: a di�erent data stru
ture
on-tributes the most misses in ea
h phase. (sampling period inparentheses) . 685.1 The TwoStep prefet
hing system 775.2 A simple TwoStep kernel to perform binary sear
h. 825.3 Improvements with an in�nite FIFO 945.4 Fra
tion of main memory a

esses remaining 955.5 Stall
y
les remaining after TwoStep prefet
hing for the mostfrequently missing data stru
tures (DS1 and DS2),
omparedto redu
tion in aggregate stall
y
les due to memory 965.6 Comparison of TwoStep with some prior prefet
hing studies. . 975.7 Sensitivity of speedups to FIFO
apa
ity 985.8 The e�e
t of
oheren
e
on
i
ts on performan
e. Per
entagesindi
ate fra
tion of false positives 995.9 The importan
e of pushing to DL1 1006.1 Overview of the TwoStep
ompiler as a series of re�nements. . 1036.2 A simple C program (A), pull instru
tions added to it (B),and the
orresponding prefet
h program (C). Arrows
onne
tprefet
hes in the prefet
h program with
orresponding pull in-stru
tions in the main program. 1046.3 Appli
ation viewed as a tree of
ontext-sensitive loops. Shadednodes are shortlisted loops. Three
lusters are shown. Leaf Cdoes not belong to a
luster be
ause it has no an
estor in theshortlist. 107xiv

6.4 Stit
h point sele
tion starting at a spe
i�
 statement. Takesa loop
luster as input and returns a list/sta
k of
ontext-independent statements after whi
h stit
h
ode should be in-strumented. 1116.5 Linked list traversal in lowered C form. 1136.6 A simple C program and its
ontext-sensitive interpro
eduralba
kward sli
e . 1166.7 Loops with lots of dependent instru
tions have a small numberof possible densities (300.twolf). 1206.8 183.equake
onsists mostly of loops with multiple dependen
e
hains. 1237.1 The a

ura
y of TwoStep prefet
hing for our appli
ations. . . 1337.2 Aggregate misses remaining after TwoStep prefet
hing. Thismetri
 underestimates the improvement due to TwoStep. . . . 1347.3 Stall
y
les remaining after TwoStep prefet
hing for the mostfrequently missing data stru
tures (DS1 and DS2 and DS3). . 1357.4 Comparing prefet
h te
hniques 1367.5 The Ar
hetype mi
roben
hmark for exploring the appli
ation
overage of di�erent prefet
h s
hemes 1397.6 The
overage of GRP by iterations of
omputation per obje
ta

essed, and by regularity (both variables from Figure 7.5).GRP is biased towards the regular side of the spa
e. 1407.7 The
overage of TwoStep by iterations of
omputation per ob-je
t a

essed, and by regularity (both variables from Fig-ure 7.5). Both regular and irregular appli
ations now bene�tfrom prefet
hing. 1427.8 Combining SRP with TwoStep gives the best of both worlds. . 1437.9 How TwoStep's speedups s
ale with growing memory laten
y. 1457.10 How GRP's speedups s
ale with growing memory laten
y. . . . 1467.11 Sensitivity of TwoStep's speedups to FIFO
apa
ity. 1477.12 Sensitivity of TwoStep's speedups to laten
y of the �rst
a
he-line on a pull. Subsequent
a
he-lines arrive 1
y
le apart. Fur-ther in
reases in laten
y do not
ause more dropo�; the right-most bar for ea
h group measures the speedup due to prefet
h-ing to L2 rather than DL1. 1481 164.gzip { window . 161xv

2 164.gzip { prev . 1623 164.gzip { inbuf . 1634 164.gzip { fd . 1645 175.vpr { rr node . 1656 175.vpr { rr heap . 1667 175.vpr { rr node route inf 1678 175.vpr { linked f ptr . 1689 177.mesa { Image Buffer . 16910 177.mesa { Depth Buffer . 17011 177.mesa { Surfa
e Vertex Buffer 17112 177.mesa { Surfa
e Normals 17213 177.mesa { Pixel Buffer . 17314 179.art { f1 layer . 17415 179.art { bus . 17516 179.art { tds . 17617 181.m
f { nodes . 17718 181.m
f { ar
s . 17819 181.m
f { perm . 17920 181.m
f { basket . 18021 181.m
f { dummy ar
s . 18122 183.equake { K[℄[℄ . 18223 183.equake { disp[℄ . 18324 183.equake { K[℄ . 18425 183.equake { K . 18526 183.equake { disp . 18627 188.ammp { atom . 18728 188.ammp { nodelist . 18829 188.ammp { atomlist . 18930 188.ammp { ve
tor . 19031 256.bzip2 { blo
k . 19132 256.bzip2 { quadrant . 19233 256.bzip2 { zptr . 193xvi

34 300.twolf { netarray[℄!netptr 19435 300.twolf { tmp rows[℄ . 19536 300.twolf { rows[℄ . 196

xvii

List of Tables3.1 Details of the simulated Alpha 21264-like pro
essor and memoryhierar
hy . 313.2 The ben
hmarks we use and their aggregate memory hierar
hybehavior . 323.3 Details for some of the major data stru
tures in Figure 3.2. . . 373.4 Des
riptions of the major data stru
tures in Figure 3.2 (
ont'd). 383.5 Des
riptions of the major data stru
tures in Figure 3.2 (
ont'd). 394.1 Computing the point volatilities of some simple example
urves. 565.1 The ISA for TwoStep's prefet
h
ontroller. 805.2 Some
ommon a

ess patterns translated into the TwoStep ISA. 815.3 ISA extensions for the main general-purpose pro
essor. 875.4 Baseline TwoStep
on�guration. Pro
essor
on�guration in Ta-ble 3.1. 895.5 Vital statisti
s of our hand-
rafted prefet
h programs 936.1 Size of the
lustering state spa
e 1186.2 Sli
e densities for the di�erent
on�gurations of the most inter-esting
lusters . 1196.3 Size of the prefet
h-point sele
tion state-spa
e, with
ommondensities for di�erent prefet
h-points. DV stands for dereferen
evolume as de�ned in Se
tion 6.2 1216.4 Vital statisti
s for the sli
es generated by our
ompiler (C), and
omparisons with the hand-
rafted sli
es from Chapter 5 (H). 124
xviii

Chapter 1Introdu
tion
For about two de
ades starting in the early '80s, pro
essor
lo
k speedimproved by approximately 50% per year, while DRAM speed only improvedat about 7% per year. As a result, the speed gap between pro
essor and mainmemory
y
le time doubled approximately every 6.2 years [8, 32℄. Pro
essorspeeds have sin
e largely stopped their exponential growth, but modern sys-tems must still deal with laten
ies to main memory of up to 2000
y
les.Ca
he hierar
hies have grown in importan
e as a way to mitigate thee�e
ts of this speed gap [46, 73, 87{89℄; today's mi
ropro
essors often havethree levels of
a
he memories, with ea
h level �ltering the address stream seenby lower levels. Ca
hes however make assumptions of spatial and temporalmemory lo
ality that are not always valid, and many programs still spend asubstantial fra
tion of their time stalling for memory.The problem of in
reasing memory laten
y has
onsumed mu
h resear
he�ort, and yielded signi�
ant new advan
es. Prior work in memory-systemmay be
ategorized into two
lasses: laten
y avoidan
e, and laten
y toleran
e.Laten
y avoidan
e te
hniques attempt to redu
e average memory a

ess time(AMAT) for a set of
ommon a

ess patterns. Su
h te
hniques in
lude among1

others multi-word
a
he-lines to exploit spatial lo
ality, vi
tim bu�ers, andskewed-asso
iative
a
hes to mitigate
on
i
t misses [42, 80℄.Laten
y toleran
e te
hniques try to �nd independent useful work todo while they wait for long-laten
y memory a

ess to
omplete. Examples oflaten
y toleran
e are pipelined memories and banked stru
tures that
an bea

essed in parallel [15℄, out-of-order pro
essors and non-blo
king
a
hes todis
over lo
al parallelism in a serial representation of software [4, 18, 39℄, andmore global uses of parallelism su
h as multi-threading [48℄.Prior work has also emphasized a spe
i�
 sub-
ategory of laten
y toler-an
e te
hnique. S
heduling te
hniques attempt to neutralize AMAT by usingthe various levels of the memory hierar
hy as staging stations for the e�e
tivetransfer of useful data to the pro
essor. They in
lude instru
tion s
hedulingfor load laten
ies and software-pipelining in the
ompiler [58, 65℄, s
hedulinga

esses to DRAM in hardware [37℄, a variety of prefet
h te
hniques in softwareand hardware, and te
hniques su
h as read-miss
lustering [69℄.In spite of these advan
es, the memory system
ontinues to be a majorbottlene
k to performan
e while the variety of appli
ations has
ontinued togrow. While the above te
hniques are often e�e
tive, their e�e
t varies for dif-ferent appli
ations, and it is hard to estimate a priori the intera
tion betweena spe
i�

lass of optimizations and a spe
i�
 appli
ation. As appli
ationsand the systems they run on grow more
omplex, it be
omes more diÆ
ultto determine potential sour
es of ineÆ
ien
y and mismat
h between the two.Given the requirement to handle a variety of appli
ation workloads, s
heduling2

 addLayout () ;
}

if (inst == mop) {

1

2

struct foo bar ;
void main () {
 for (i = 0; i < 10; ++i) {
 f2 = malloc (struct foo) ;

}
 }

2

1
sim−alpha

ccc−breeze

struct foo bar ;

void main () {

 for (i = 0; i < 10; ++i) {

 FILE.print ("bar", bar, sizeof(bar)) ;

 PTR = f2 ;

 asm("mop") ;

 }
}

 f2 = malloc(struct foo) ;

 NAME = "f2" ;

 SIZE = sizeof(f2) ;

 asm ("mop") ;

Figure 1.1: DTra
k tool
hainpromises the greatest
exibility at runtime in adapting to the needs of di�erentprograms without dilating
riti
al paths in a memory a

ess.In this dissertation we perform a detailed appli
ation
hara
terizationthat de
omposes program behavior by data stru
ture and phase. We summa-rize the ri
h pi
ture provided by su
h data into dominant a

ess patterns fordi�erent phases in ea
h appli
ation. We then fo
us on the irregular appli
a-tions that are
hallenging for prior work and des
ribe some key properties ofthese programs. These key properties then drive the next phase: the design ofa novel prefet
hing mi
roar
hite
ture
alled TwoStep. The rest of this
hapteroutlines this pro
ess in greater detail.1.1 Detailed appli
ation
hara
terization: data stru
-tures and phasesUnderstanding how appli
ations use the memory system is importantto at least three groups: (1) system designers who
an apply insights intomemory system usage to improve hardware and software memory optimiza-3

tion te
hniques, (2) appli
ation writers who
an understand how their programuses the memory system and optimize for better lo
ality, and (3) ben
hmarkdevelopers who want to ensure that the diverse patterns of behavior in real-isti
 appli
ations are represented. While many tools have been developed toanalyze memory behavior [53, 60, 63, 96℄, none give insight into the behavior ofindividual data stru
tures within a program. Our tool | DTra
k | gathersmemory system statisti
s on a per data stru
ture basis, to help identify thosedata stru
tures that have the strongest in
uen
e on performan
e and to o�erinsight into their size and a

ess patterns.Figure 1.1 outlines the stru
ture of the DTra
k tool
hain. DTra
k
on-sists of a C-to-C
ompiler that automati
ally instruments variable allo
ationsin programs and a detailed timing simulator that
onsumes this instrumen-tation. This
ombination yields a tool that generates data pro�les - detailedbreakdowns of
a
he misses by the di�erent high-level data stru
tures in thesour
e
ode. In our experiments with DTra
k, we measure the distributionof misses in major data stru
tures, the impa
t of these misses on total
y
le
ount and on time spent stalling in the pipeline.Given this data pro�le, we then manually
ombine it with a
onven-tional
ode pro�le to determine the dominant a

ess patterns for ea
h datastru
ture. Figure 1.2 summarizes the a

ess patterns of three representativeappli
ations as the manner in whi
h the major loops traverse the major datastru
tures. Sin
e most
a
he misses in these programs o

ur within these loops,we
an fo
us on them and treat the entire appli
ation as simply a sequen
e of4

I. 179.arti = i+1 {f1[i℄} i = i+1 {bu[i℄}a) b)II. 181.m
fi = i+1 {node[i℄} node = DFS(node) {node->
hildnode->parentnode->siblingnode->prevSibling}a) b)III. 300.twolfi = rand() {t1 = b[
[i℄->
blo
k℄t2 = t1->tile->termt3 = n[t2->net℄}Figure 1.2: A

ess patterns of major loops: the sequen
e of obje
ts tou
hedin ea
h iteration. The expression outside the body shows how the indu
tionvariable
hanges for ea
h loop (DFS denotes depth-�rst traversal); the bodyenumerates important loads dependent on the indu
tion variable.
5

iterations from its major loops. The major loops in all our appli
ations havethe following key properties:� They exhibit a wide variety of a

ess patterns, both between di�erentappli
ations and within some appli
ations.� While a

ess patterns
an be very di�erent in di�erent loops, ea
h loop
an be summarized in a symboli
 manner like the examples in the pre-vious se
tion.� Ea
h loop iteration performs a series of memory a

esses that are often
hained together by data and
ontrol dependen
es.� Even though individual loop footprints
an far ex
eed
onventional
a
he
apa
ities, the footprint of ea
h individual loop iteration is small ando

upies just a few
a
helines of a normal level-1 data (DL1)
a
he.� Most of the hard
a
he misses o

ur on the �rst a

ess to an obje
t in aloop iteration.All but the last of these points are
onventional wisdom; our
hara
teriza-tion helped us to quantify their e�e
ts, and to fo
us our attention on theseparti
ular properties.1.2 Summary of prior approa
hesNumerous prefet
hing te
hniques have been proposed in the litera-ture, using both software and hardware, and initiating both single short-range6

prefet
hes and long-range sequen
es of prefet
hes at a time. Purely softwareprefet
hing, using the
ompiler to strategi
ally pla
e prefet
h instru
tions inan appli
ation's instru
tion stream, is a
ommon approa
h [13, 59℄. However,it is often hard for the
ompiler to stati
ally pla
e a prefet
h the right distan
ebefore its use. If the prefet
h is too
lose to its use, its laten
y is not entirelyoverlapped; if the prefet
h is too far, the prefet
h is likely to pollute the
a
heand itself be evi
ted before use.Prefet
hing with hardware support provides greater
exibility at run-time in modulating the sla
k between prefet
h and use based on appli
ationneeds. Prior studies have resulted in many su
h prefet
hing te
hniques, �rstissuing prefet
hes one at a time, either under
ompiler
ontrol [13, 59℄ or usingspe
ial hardware that is triggered on spe
i�
 events su
h as
a
he a

esses [87℄,
a
he misses [16, 41℄ and dead blo
k spe
ulation [49℄.Under the pressure of growing laten
ies to main memory, re
ent workhas fo
ussed on ways to issue systems of prefet
hes at a time. The sear
h forways to determine sequen
es of addresses to prefet
h has pro
eeded in twolargely independent dire
tions driven by
on
i
ting appli
ation requirements.The �rst
onsists of using prior history in an appli
ation's exe
ution to spe
u-latively sele
t systems of prefet
hes, expressed either as a region of the addressspa
e [55, 99℄ or as an aÆne fun
tion [43, 85℄.The se
ond dire
tion
onsists of pre
omputation -
reating a prefet
hthread in either hardware or software that runs ahead of the appli
ation anddetermines what to prefet
h [11, 66, 93, 103, 105℄. This pre
omputation may7

ome from running spe
ial kernel programs,
opies of the appli
ation undervarious spe
ulative modes, or dynami
ally generated sequen
es of instru
tions.Both approa
hes have drawba
ks. History-based approa
hes are unable to gen-erate a

urate prefet
hes in the presen
e of arbitrarily
omplex a

ess patterns.On the other hand, open problems in pre
omputation-based approa
hes arelow-overhead throttling to avoid
a
he pollution when the prefet
h thread runstoo far ahead, and prioritizing between independent prefet
hes issued by theprefet
h thread.Summary of drawba
ks: The state of the art in prefet
h te
hniques hasseveral major limitations; the major de
isions of what to prefet
h, when toprefet
h it and where to prefet
h to remain
hallenges in their most generalsetting. First, de
iding what to prefet
h is a
hallenge for irregular programsthat interleave spatial a

ess and pointer dereferen
e in
omplex ways, andmodern prefet
h te
hniques are often better tuned for one of those a

ess pat-terns than others, su
h as prefet
hing arrays or
hasing pointers. Appli
ationswhose a

ess patterns are too
omplex for
urrent approa
hes are also oftenthe ones with the worst baseline performan
e and therefore most in need ofimprovement. They are also unlikely to fade in importan
e;
urrent trends ofgrowing appli
ation footprint, in
reasing software
omplexity and the need forgreater
exibility at deployment-time have made the use of pointers in
reas-ingly
ommon [10, 67, 72℄.Se
ond, me
hanisms that improve prefet
h a

ura
y for one set of appli-8

Processor

DL1

����������������
����������������
����������������

����������������
����������������
��

L2

Main Program

Controller
Prefetch

Prefetch Program

Memory

FIFO

hints
ISA

Data

Control

critical path
unmodified

To L2

Instruction
Store

Register File

32 words

PC

Processor
loads

Figure 1.3: The TwoStep prefet
hing system
ations often end up
ausing tighter timing
onstraints for another set resultingin prefet
hes that are either initiated too late to be e�e
tive or those that enterthe
a
he too early and pollute it.Finally, the greater sensitivity of the DL1 to pollution has resultedin most approa
hes prefet
hing ex
lusively to the L2. We now outline ourapproa
h to address these drawba
ks, driving our study with a detailed
har-a
terization of appli
ation
hara
teristi
s.1.3 TwoStep: Mi
roar
hite
ture and
ompiler forpre
omputation-based prefet
hingThe
ompeting advantages of history- and pre
omputation-based prefet
h-ing are largely
omplementary. Rather than
hoose between the two, we9

all for a synthesis driven by appli
ation
hara
teristi
s. Our approa
h isto sele
t between history- or pre
omputation-based prefet
hing depending onwhether the appli
ation is respe
tively more likely to be
onstrained by MLPor prefet
h a

ura
y, using the twin metri
s of
omputation per memory a
-
ess and a

ess-pattern irregularity. Our results show that these metri
s aree�e
tive at predi
ting whi
h appli
ations will bene�t from history-based andwhi
h from pre
omputation-based prefet
hing.We begin our design by fo
ussing on the
hallenges posed by irreg-ular programs and use the above analysis to guide the design of a novelpre
omputation-based prefet
hing system - TwoStep. Our design (Figure 1.3)
onsists of a stati
ally-generated prefet
h program that exe
utes on a pro-grammable prefet
h
ontroller. Our prefet
h programs are powerful enough toen
apsulate strided, pointer and index-array a

ess. This allows us to
overthe broad variety of a

ess patterns. In order to minimize laten
y betweendependent prefet
hes, we pla
e the prefet
h
ontroller in the L2. In order toavoid pollution in the DL1 we push ea
h prefet
h from L2 to a FIFO betweenL2 and DL1. Prefet
h
ulminates in the movement of a �xed number of
a
he-lines into the level-1 data (DL1)
a
he. Sin
e the fo
us of TwoStep prefet
hingis on the �rst a

ess to ea
h obje
t in a loop, this movement is or
hestrated byan ISA enhan
ement we
all the Pull instru
tion, inserted at the start of ea
hloop iteration in order to bring into the DL1 the
a
he-lines that
onstitutethe working set of that iteration. Sin
e loop iteration footprint is low, pollu-tion in the DL1 due to o

asionally ina

urate prefet
hes is bounded. Finally,10

the presen
e of the FIFO and Pull instru
tions makes it easy to throttle theprefet
h thread | the prefet
h program stalls when the FIFO is full. Thislightweight me
hanism for throttling avoids polluting the L2.We implement a
ompiler for TwoStep to automate the generation ofprefet
h kernels from appli
ation sour
e
ode. Our
ompiler improves on thestate of the art [47℄ by requiring less pro�le information (iteration
ounts forloops only) and by performing a more aggressive sear
h of the state spa
e ofloop
luster
ombinations to sele
t the most favorable loops. The
ombinationof
ompiler support and these mi
roar
hite
tural me
hanisms provides e�e
-tive prefet
hing for irregular appli
ations, in
luding several that have been
hallenging to prior work.However,
omparisons with Guided Region Prefet
hing [99℄ show thatpre
omputation fails to a
hieve as mu
h bene�t on more regular appli
ationswith spatial lo
ality. A detailed analysis reveals that the trends shown bythe two
ompeting te
hniques are representative of the more general
lassesthey belong to: ba
kward-looking history-based prefet
hing vs forward-lookingpre
omputation-based prefet
hing. History-based prefet
hing
onsists of tra
k-ing the history of the address stream for an appli
ation and making predi
-tions based on the assumption that future behavior will be similar to the past.Pre
omputation-based prefet
hing, on the other hand, does not make this as-sumption and instead expli
itly pre
omputes the appli
ation's future needs.We �nd that appli
ation aÆnity for one
lass or the other is de
idedby two major properties: a

ess pattern regularity and
omputation per mem-11

ory a

ess. Appli
ations with irregular a

ess patterns will
learly have highaÆnities for history-based prefet
hing. This is not surprising; regular a

esspatterns are easier to predi
t based on knowledge of the past address stream.Conversely, we expe
t irregular appli
ations to prefer pre
omputation-basedprefet
hing. More surprising, however, appli
ations with irregular a

ess pat-terns require more
omputation per memory a

ess in order to bene�t frompre
omputation-based prefet
hing. The greater prevalen
e of dependen
esand sequentialization
auses poor utilization of prefet
h bandwidth and makesthem more sensitive to the
riti
al path in a loop.When the memory footprint of a loop exhibits signi�
ant lo
ality, history-based prefet
hing
an issue prefet
hes in parallel and tolerate mu
h `tighter'loops with less
omputation per memory a

ess. However, su
h approa
hesfail to bene�t appli
ations with low spatial lo
ality, and a

urate prefet
hingrequires a pre
omputation thread to run ahead of the main program gener-ating prefet
hes. This approa
h is however
onstrained in its memory-levelparallelism, and as a result
annot be applied to loops with low levels of
om-putation per memory a

ess. This analysis of the state spa
e provides thebasi
 intuition behind the
omplementary nature of these two
ategories ofprefet
hing. Di�erent loops in an appli
ation require either one or the other.As a result,
ombining region prefet
hing with pre
omputation is a feasibleapproa
h, and we show that this
ombination su

essfully a
hieves the best ofboth worlds.
12

1.4 Dissertation organization and
ontributionsIn this dissertation we fo
us on the short
omings of past work in prefet
h-ing irregular memory-intensive appli
ations and try to remedy these short-
omings without
ompromising hard-won improvements for other appli
ations.Our solution
ombines features from software and hardware as well as lo
al andglobal approa
hes to prefet
hing. It
onsists of a
ompiler-generated prefet
hprogram that runs on a simple in-order programmable prefet
h
ontroller inthe level-2
a
he (L2) [99℄; a FIFO between the L2 and the level-1 data (DL1)
a
he that re
eives every prefet
h generated by the prefet
h
ontroller [97℄;and ISA enhan
ements that provide hints on ea
h loop iteration in the mainprogram, in
luding its bounds, expe
ted footprint, and a

ess patterns. TheISA enhan
ements en
ode general properties about a program that
ould beused by other te
hniques as well, and we show how to use them to or
hes-trate data transfer from FIFO to DL1. In parti
ular, this thesis makes three
ontributions:� A detailed
hara
terization of irregular appli
ations to �rst establish thefeasibility of overlapping a

ess laten
y in them, and then glean someinsight into their a

ess patterns.� The design and evaluation of a prefet
h te
hnique
alled TwoStep that
ombines the bene�ts of software and hardware as well as short- andlong-range prefet
hing.
13

� The insight that pre
omputation- and history-based prefet
hing are
om-plementary approa
hes, with strengths and weaknesses in opposition toea
h other. Appli
ations with irregular a

ess patterns
an bene�t fromthe the greater
exibility of pre
omputation; appli
ations with low
om-putation per memory a

ess require the better bandwidth eÆ
ien
y ofhistory-based approa
hes.The rest of this thesis is stru
tured as follows. In Chapter 2 we survey the priorliterature in several areas related to this dissertation. Chapter 3 des
ribes ourframework for de
omposing memory behavior by data stru
ture and summa-rizes the results of this study. Chapter 4 similarly des
ribes our framework forstudying phase behavior, with a novel adaptive algorithm to identify the bestgranularity at whi
h to view the phase behavior of an appli
ation. Chapter 5des
ribes our TwoStep prefet
h mi
roar
hite
ture and presents the results ofan initial study with hand-
rafted kernels. Chapter 6 des
ribes the TwoStep
ompiler and
hara
terizes the state spa
e seen by it for our appli
ations.Chapter 7 puts mi
roar
hite
ture and
ompiler together for a
omprehensiveevaluation, quantifying the strengths and weaknesses of TwoStep
ompared toother te
hniques that rely on spatial lo
ality, and showing that the two kindsof prefet
hing are amenable to re
ombination. Finally, Chapter 8 summarizesour insights from this work and identi�es areas for future study.
14

Chapter 2Ba
kground and related work
In this se
tion, we summarize the related work that we build upon inthis thesis. In tune with the stru
ture of the thesis, we break down our analysisinto three
ategories - memory visualization and
hara
terization tools relevantto DTra
k, the body of prefet
hing studies relevant to TwoStep, and �nallythe prior work in whole-program analysis, pointer analysis and sli
ing that theTwoStep
ompiler is based on.2.1 Visualizing appli
ation memory behaviorSimulation is a
ommon method of produ
ing aggregate memory statis-ti
s [1, 9, 33, 89℄. More sophisti
ated
a
he memory behavior analysis toolshave been developed [53, 60, 61, 63, 64, 96℄, and this se
tion
ompares DTra
kto this prior work. Our work di�ers from these tools in that we
onsider pointerdata stru
tures in addition to arrays, and show that aggregate statisti
s ob-s
ure possible optimization opportunities revealed by phase behavior. Thisin
reased detail
omes at a
ost of in
reased simulation time.Most tools have fo
used on aggregate data stru
ture and pro
edure-level information for arrays [53, 60, 61℄. Lebe
k et al. [53℄ and Martonosi et15

al. [60℄ present data stru
ture and pro
edure level aggregate miss information,and
lassify misses as
ompulsory,
apa
ity, and
on
i
t. Both papers alsopresent a number of software optimizations for improving
a
he performan
e.While these tools point users to the
ode and arrays that
ause problems, theyexamine the behavior of an array within the
ontext of a single pro
edure,resulting in two weaknesses. First, be
ause they do not perform
ross datastru
ture analysis, it is not dire
tly apparent from their aggregate data statis-ti
s whi
h data stru
tures interfere with themselves or with others. Se
ond,sin
e they do not perform
ross-pro
edure analysis, optimizations
hosen toimprove performan
e of one array/pro
edure
ombination may diminish per-forman
e in another pro
edure. Finally, both tools handle only regular array-based data stru
tures rather than pointer-based data stru
tures. M
Kinleyand Temam analyze the
omplementary dimension of inter-nest and intra-nestloop lo
ality [63, 64℄, but again
onsider only arrays and aggregate informationbetween loop nests.2.2 Analyzing time-varying behaviorSeveral tools have studied time-varying behavior. The Ca
he Visual-ization Tool [96℄ demonstrates the time-varying behavior of arrays as theymar
h through the
a
he. The graphi
al
omponent of this tool
olors
a
he-lines a

ording to their lo
ality and misses by data stru
tures, so the user
an see whi
h
a
he-lines
ause
on
i
t misses. This level of detail supportsanalyzing a single loop nest at a time, whereas we analyze data stru
ture16

phase behavior a
ross mu
h longer periods. Chilimbi et al. [20, 78℄ analyze
ompressed program tra
es, de
ompose them into hot data streams, and usethese hot data streams to drive layout and prefet
hing optimizations. This ap-proa
h of sear
hing for a

ess patterns a
ross the di�erent data stru
tures in aprogram is
omplementary to ours, whi
h attempts to de
ompose appli
ationa

ess patterns by data stru
ture. We believe our approa
h is more e�e
tiveat providing intuitions about appli
ation behavior that are useful to humansin di�erent roles.More re
ently, several studies have used some form of
ode signatureto dete
t phase boundaries. Basi
 Blo
k Ve
tors (BBVs) are
urrently themost a

urate method to generate
ode signatures, and several studies exploretheir uses in
lustering phases and dete
ting phase transitions in an o�ine [83,84℄ and online [86℄ setting. One alternative to BBVs is the use of program
ounter or Extended Instru
tion Pointer Ve
tors (EIPVs) [6℄, whose meritshave been debated by Lau et al. [51℄. Another alternative
onsists of morehigh-level metri
s based on
ode stru
ture, su
h as register use ve
tors or loopve
tors [52℄. All these studies, however, sele
t an arbitrary sampling periodand use it for all the appli
ations they evaluate. In this study, we provide amore rigorous method to separately determine the
orre
t sampling period forea
h appli
ation.Perhaps the most similar work to ours is the online phase dete
tor ofNagpurkar et al. [68℄. Their system maintains a
urrent window of obje
treferen
es within a JVM and assesses the similarity of the re
ent referen
es17

in it to those in an older trailing window. Like our study they evaluate thee�e
t of window size (sampling interval) on phase dete
tion. While our studylooks for phases in �ne-grained behavioral statisti
s of an appli
ation, theystudy phase behavior in the fun
tional list of obje
t referen
es tou
hed by anappli
ation. The two approa
hes are
omplementary.2.3 Prefet
hingPrefet
hing has been an important tool in
ombating growing memorylaten
ies in both the
ompiler and mi
roar
hite
ture, and as a result thereis a large body of resear
h in this area. We break it down into several
ate-gories below, fo
ussing on important studies in ea
h and elaborating on theirrelationship with our s
heme.Spatial prefet
hing and stream bu�ers: The earliest systems performedprefet
hing for array-based numeri
al
odes. Software-based solutions dete
tedarray referen
es and loop indu
tion variables to prefet
h a �xed number of iter-ations in advan
e for
omplex loop nests [12, 59℄. These solutions were gearedtowards array-based appli
ations with a very di�erent patterns of behaviorfrom our fo
us in this work, and we do not
onsider them further. The earliesthardware prefet
h systems systems simply brought in the next
a
he-line on amiss [87℄. Developments and enhan
ements have pro
eeded along several di-re
tions. First, a variety of te
hniques have been studied for region prefet
hing,
ulminating in the work of Lin et al. [55℄. Se
ond, spatial hardware prefet
h-18

ers used stream bu�ers to avoid
a
he pollution in the presen
e of ina

urateprefet
hes [42, 45, 71℄; we fo
us on two exemplars of the state of the art. Sher-wood and Calder [85℄
ouple stride predi
tion with stream bu�ers, while Hurand Lin [38℄ adaptively vary stream length at an appli
ation granularity. Ourme
hanism draws inspiration from stream bu�ers as a me
hanism to avoid
a
he pollution. However, stream bu�ers are inadequate to our needs for tworeasons. First, they lengthen the
riti
al path of a normal
a
he a

ess tosear
h a
a
he and asso
iated stream bu�ers, either in series or parallel. Se
-ondly, the stream-bu�er approa
h to handling ina

ura
ies in predi
tion doesnot �t our model. Stream bu�ers
an be seen as a
onstantly evolving set ofhypotheses on the stream of addresses that a program needs. When one fails,the stream bu�er is simply
ushed to make way for another hypothesis. Inthe
ontext of irregular appli
ations, however, the
ompiler-supplied hypoth-esis is a valuable resour
e and our me
hanism is able to tolerate momentaryina

ura
ies in the FIFO without needing to frequently
ush it. While Hurand Lin do not spend time
onstru
ting elaborate hypotheses, their approa
hfo
usses ex
lusively on spatial
a
he misses, �nding short streams even in ir-regular programs. Our approa
h is
omplementary, fo
ussing instead on themore diÆ
ult non-spatial
a
he misses.Software prefet
hing by
ompiler-inserted instru
tions: Based on ear-lier work on array-based programs, Lipasti et al. performed an early studyshowing that bene�ts
ould be obtained by prefet
hing pointers passed as pa-19

rameters to fun
tion
alls [56℄. Luk and Mowry identi�ed the main problemto over
ome in array-based prefet
hing: the presen
e of pointers introdu
es aserialization between prefet
hes, so that prior prefet
hes must return beforemore progress
an be made [59℄. They performed a thorough analysis of the useof jump pointers to over
ome this serialization. Cahoon and M
Kinley builton the work of Luk and Mowry by performing interpro
edural data
ow anal-ysis in an obje
t-oriented environment with virtual-method
alls [12℄. Thesestudies handled regular pointer-based
odes su
h as linked-list and binary treetraversal with su

ess. However they are unable to adapt the sla
k given toprefet
hes at runtime.Hardware prefet
hing by dete
ting patterns in the address stream:Another line of prefet
hing studies add hardware enhan
ements to supportthe prefet
hing de
ision. A number of studies have found su

essively moresophisti
ated patterns to prefet
h by observing the patterns of an appli
a-tion's address stream. We note the progression of ideas from early studieson dete
ting variable-stride patterns su
h as by Chen and Baer [19℄, throughstudies on Markov prefet
hers that use
a
he misses to trigger further
a
he a
-
esses [5, 41, 77℄, �nally
ulminating in the work of Ia
obovi
i et al. [40℄, whi
hpresents
omplex stride-dete
tion hardware to tra
k and predi
t a variety ofaÆne a

ess patterns. Dead-blo
k
orrelating prefet
hers are another devel-opment on this idea, triggering prefet
hes not on spe
i�

a
he misses, but onthe earlier spe
ulative evi
tion of
a
he-lines [49℄. All these studies assume20

that there are patterns to be found in the address tra
e, and in pra
ti
e are atthe mer
y of pathologies of memory allo
ators. They also need
a
he missesto perform prefet
hes, and are therefore self-limiting in the improvement they
an bring.Hardware-based pointer prefet
hing: Several studies have attempted tomodel pointers themselves rather than raw address streams. An early expo-nent was the study of jump pointers by Roth and Sohi [76℄, showing them tobe feasible for prefet
hing in both software using hand-
oded kernels and inhardware using a spe
ialized unit to
onstru
t
hains of jump pointers andstore them in the intersti
es of heap allo
ations. In spite of being amenableto implementation in hardware, jump pointer-based prefet
hing su�ers fromthe
lassi
 problem of software prefet
hing - an inability to adaptively timeprefet
hes based on dynami

hanges to a program.Re
ent work on
ontent-dire
ted prefet
hing emphasizes this aspe
t [3,23℄. These studies
ontain a prefet
h me
hanism
onsisting of a simple hard-ware unit that s
ans in
oming
a
he-lines for pointers and initiates prefet
hesalong them. They also in
lude a reinfor
ement me
hanism that adaptivelyprunes pointer paths that a program does not use. This approa
h has twodrawba
ks. First, it addresses pointer and indire
t prefet
hes, but is unableto avoid spatial misses for obje
ts larger than a
a
he-line. TwoStep is ableto handle arbitrary interleavings of regular and irregular types of a

ess. Se
-ond, like address-stream-based approa
hes des
ribed above, it relies on
a
he21

misses to trigger prefet
hes albeit in a more eÆ
ient manner. TwoStep allowsthe prefet
h thread the opportunity to run ahead regardless of
a
he missesor other pipeline state. As an extreme example, a low-ILP appli
ation with ahigh
omputate-store ratio but irregular a

ess patterns would spend a signif-i
ant portion of its time stalling for memory in spite of su
h a pointer prefet
hsystem. TwoStep would however be able to stay ahead of the main programand avoid most DL1 misses.Programmable prefet
h engines: While the above pointer prefet
hingstudies
ould get multiple iterations ahead of the main program, they werefo
ussed on pointers alone and unable to handle more sophisti
ated a

esspatterns
ombining spatial and pointer a

ess. A
ouple of re
ent studies haveaddressed this. Guided Region Prefet
hing by Wang et al. provides hints inload instru
tions that
an permit the L2-based prefet
h engine to run aheadof the program [99℄. However, this work avoids pollution by a hard boundon the number of iterations the prefet
her
an run ahead. The Push modelof Yang et al. adds engines at ea
h level in the
a
he hierar
hy that ea
hexe
ute spe
ialized kernels to push data to the level above [102℄. Comparedto our work, that study has several di�eren
es. First, it is designed for purelypointer-based traversals and is unable to handle
ombinations of spatial andpointer-based a

ess. Se
ond, it involves mu
h more hardware
omplexityby adding engines at ea
h level of the memory hierar
hy, engines that aresupers
alar and implement
omplex heuristi
s for prioritizing and throttling22

a

esses. The use of a FIFO serves to substantially simplify our design relativeto theirs.A third study with some similarity to our own is the programmableprefet
h engine of VanderWiel and Lilja [97℄. This study uses a prefet
h enginesimilar to ours that prefet
hes to both DL1 and L2. However, it avoids pollu-tion by using tags on
a
he-lines (rather than on instru
tions as in TwoStep)to maintain a produ
er-
onsumer relationship between pro
essor and prefet
hengine. In spite of being programmable, this engine was designed for largelyarray-based
odes, and used a simple intra-pro
edural analysis to generateprefet
h programs. TwoStep extends this approa
h to support irregular appli-
ations.Novel pro
essor ar
hite
tures with prefet
hing e�e
ts: The primaryar
hite
tural idea inspiring TwoStep was the de
oupled a

ess/exe
ute ar
hi-te
ture of Smith [90℄. We believe it is the work
losest in spirit to ours, usingsoftware-
ontrolled queues to manage slip between exe
ution and memory-a

ess \streams". Designed in a very di�erent
ontext, the motivation ofthis design was to sidestep the Flynn bottlene
k (approximating later super-s
alar designs) and to overlap multiple instru
tions with simple issue logi
(approximating out-of-order exe
ution). It is useful to enumerate the di�er-en
es between de
oupled ar
hite
ture and TwoStep. Compared to this earlystudy, we maintain an asymmetry between the two streams, relegating thea

ess stream to a purely performan
e-enhan
ing fun
tion and redu
ing the23

frequen
y of syn
hronization \handshakes" between the two streams.Several re
ent studies have made dramati

hanges in overall pro
es-sor mi
roar
hite
ture, resulting in prefet
hing e�e
ts among other bene�ts.The RAW ar
hite
ture reports substantial speedups for irregular appli
ationsusing a more expli
it or
hestration of data movement and with loss of
om-patibility with existing programming models [94℄. Over
ommon appli
ations- m
f and twolf - we show
omparable improvements in TwoStep but with amore
onventional ISA and software sta
k. Datas
alar and Slipstream pro-
essors simultaneously run a program on multiple pro
essors and
ause it tospeed up on ea
h of them [11, 93℄. Runahead exe
ution is more parsimoniousand utilizes pro
essor resour
es to run in \spe
ulative" mode when it wouldotherwise be stalled [66℄. While runahead exe
ution has bene�ts beyond justprefet
hing, we note that like some of the hardware prefet
h s
hemes aboveit only performs prefet
hes during
a
he misses, thereby being less eÆ
ient inoverlapping laten
y. It is also unlikely to be e�e
tive in prefet
hing serializedpointers sin
e a stall in one pointer would invalidate all
omputations basedon it.Summary: As the above survey shows, TwoStep bene�ts from the lessonsof a large number of prior studies. Many of these studies share some pointsof similarity but make design de
isions that
ause them to be ine�e
tive onirregular programs. The novel ar
hite
tures surveyed above yield some ofthe bene�ts of TwoStep but at greater
ost or with a
hange in programming24

model. A
ommon thread among many prior studies is to use
a
he miss eventsto trigger prefet
hes. Like the designers of dead-blo
k
orrelation prefet
hing,we �nd this approa
h to be self-limiting [49℄.2.4 Sli
ing and whole-program analysisInterpro
edural or whole-program analysis has been the topi
 of mu
hresear
h attempting to improve its eÆ
ien
y in a variety of
ontexts: pro-gramming languages with and without pointers [34, 35℄, automati
 paralleliza-tion [79℄, and a variety of spe
i�
 analyses su
h as
onstant propagation [29℄,side-e�e
t analysis [21℄ and es
ape analysis [7, 26℄. Whole-program analysisand pointer analysis often have a symbioti
 relationship in the
ontext of lan-guages with pointers like C [17℄; aggressive pointer analysis must ne
essarilybe a whole-program analysis, while other appli
ations of whole-program analy-sis often require points-to information. Again, mu
h e�ort has been expendedon the development of eÆ
ient algorithms for whole-program pointer analy-sis [24, 27℄.There has been relatively less work in sli
ing, with appli
ations largelyin the �eld of program-understanding [36, 50, 100℄. Our appli
ation of sli
ingis rather di�erent from this
onventional use; while most sli
ing studies fo
uson �nding minimal sli
es while retaining full
overage, our fo
us is on �ndingsparse regions in a sli
e that maximize the amount of
omputation not in thesli
e. In parti
ular, full
overage for pathologi
al
ases is not a
on
ern sin
ewe use sli
es for performan
e, not
orre
tness. Also, while most sli
ing studies25

use a stati
 representation of program stru
ture, simply returning the set ofstati
 program statements that belong in a sli
e, our view is more orderedand
ontext-sensitive: the
ompiler must return a
ontext-sensitive sequen
eof statement instan
es.2.5 Compiler support for pre
omputationCompilers for pre
omputation are based on program sli
ing and typ-i
ally operate either by post-
ompilation binary translation [54, 76, 77℄ or atruntime in a dynami

ompiler [104℄. Computing sli
es in hardware restri
tsthe s
ope of individual sli
es, while binary translation dete
ts only simplepointer-
hasing patterns. The state of the art in thorough
ompiler-based pre-
omputation is the work of Kim and Yeung [47℄. Kim and Yeung's
ompilerframework uses 2 kinds of pro�le information | loop iteration
ount pro�lesand
a
he miss pro�les | to sele
t
ompute pre
omputation sli
es for exe-
ution in spare hardware
ontexts of a simultaneous multithreading (SMT)pro
essor. We perform a more detailed
omparison of this
ompiler with oursin Chapter 6.

26

Chapter 3Data stru
ture de
omposition using DTra
k
This
hapter des
ribes DTra
k and our methodology for analyzing ap-pli
ations, and performs a detailed analysis of the data stru
tures of twelveappli
ations. DTra
k separates by data stru
ture the stream of addresses anappli
ation requests from memory. Our exploration reveals a wide variety ofappli
ation behaviors and shows that opportunities for overlapping laten
yexist if hardware
an adapt to appli
ation requirements.3.1 DTra
k: A tool for studying irregular appli
ationsDTra
k
onsists of a sour
e-transformation tool to automati
ally in-strument memory allo
ation points in programs and a detailed timing simu-

 addLayout () ;
}

if (inst == mop) {

1

2

struct foo bar ;
void main () {
 for (i = 0; i < 10; ++i) {
 f2 = malloc (struct foo) ;

}
 }

2

1
sim−alpha

ccc−breeze

struct foo bar ;

void main () {

 for (i = 0; i < 10; ++i) {

 FILE.print ("bar", bar, sizeof(bar)) ;

 PTR = f2 ;

 asm("mop") ;

 }
}

 f2 = malloc(struct foo) ;

 NAME = "f2" ;

 SIZE = sizeof(f2) ;

 asm ("mop") ;

Figure 3.1: DTra
k tool
hain27

lator that
onsumes this instrumentation. The sour
e instrumentation mapsaddresses to data stru
tures in order to
ommuni
ate the address range
or-responding to ea
h variable to the simulator. Figure 3.1 shows a s
hemati
 ofour tool.The instrumentation tool is an extension to the C-Breeze C-to-C
om-piler [30℄, while the simulator is a detailed and validated timing model of theAlpha 21264 pipeline [25℄. For ea
h variable in the program, the
ompiler-generated instrumentation stores the variable's name and address at a desig-nated lo
ation in memory and interrupts the simulator by means of a spe
ialop
ode (\mop" in Figure 3.1). On exe
uting this instru
tion at runtime, thesimulator imports the information from this designated lo
ation in simulatedmemory. Sin
e the simulator knows the extent of ea
h variable in the appli-
ation at any time, it maps the virtual address of ea
h memory a

ess to aspe
i�
 variable, and maintains statisti
s on the progress of the memory a

essby the data stru
ture it belongs to. Classifying and assigning ea
h load andstore to a spe
i�
 variable slows the simulator down by 60% on average and100% in the worst
ase.3.2 Design de
isionsThe
hallenge here is to keep the overhead due to the instrumentationlow and to minimize the perturban
e to the appli
ation. There are two levelsof overhead to
onsider. The �rst is overhead in the simulator;
lassifyingea
h load and store to a spe
i�
 variable and in
rementing the appropriate28

ounter slows the simulator down by 60% on average and 100% in the worst
ase. The se
ond and more serious sour
e of overhead is instrumentationin the appli
ation itself. In addition to in
reasing the simulator's burden,appli
ation-level instrumentation
ould perturb the program under study andso
ompromise our results. Instrumentation design is therefore guided mainlyby minimizing appli
ation perturban
e:� Sta
k variables are not instrumented be
ause the high frequen
y of s
ope
hanges would raise the instrumentation overhead too mu
h. Instead, wetreat the sta
k as a single data stru
ture and
oales
e all a

esses to itby a simple range test. Our results will show that misses to the sta
kare generally negligible.� Global variables have a
onstant range over the lifetime of an appli
a-tion. We
ommuni
ate the ranges of these variables by writing themto disk and signalling the simulator as shown by instrumentation \1"in Figure 3.1. Sin
e these �le operations are a �xed-time initialization
ost, they provide the most eÆ
ient amortized mode of
ommuni
ationfor global variables.� Tra
king dynami
 allo
ations on the heap is diÆ
ult be
ause the sameraw address
ould be allo
ated to di�erent data stru
tures at di�erenttimes in a program's exe
ution. DTra
k instruments heap allo
ationsand deallo
ations (\2" in Figure 3.1) and tra
ks them in the simulator,using them to dynami
ally
hange the data stru
ture
orresponding to29

ea
h address. We distinguish data stru
tures on the heap by
all-site.As a result we are unable to distinguish between multiple allo
ations ata single
all-site. This design is not a
on
ern in the SPEC-2000 ben
h-marks we study, but might be a limitation in studying more �ne-grainedobje
t-oriented appli
ations, where a single allo
ation site produ
es lotsof obje
ts in multiple data stru
tures.Taken together, these design de
isions are su

essful at limiting instrumen-tation overhead to 10 instru
tions per heap allo
ation and 4 instru
tions perdeallo
ation. This results in total overhead of less than 0.6% of total in-stru
tion
ount a
ross all the ben
hmarks we study ex
ept gzip, where theinstrumentation is 3.7% of total instru
tion
ount be
ause of frequent heapallo
ations in inner loops.Alternatives: We
onsidered and dis
arded several alternatives to this method-ology for
lassifying memory a

esses. First, we
onsidered hardware
ountersrather than simulation to redu
e the turn-around time on our results. How-ever, hardware
ounters do not have the �delity and
exibility to tra
k
a
hemisses to many spe
i�
 �ne-grained memory regions. Se
ond, we
onsideredusing the debugging symbol-table information in appli
ation binaries, but we
ould not �nd a way to handle appli
ations with
ustom memory allo
ators,su
h as twolf. Our methodology makes it easy to inform the C-Breeze passabout the names and prototypes of appli
ation-spe
i�

ustom allo
ation rou-tines, along with information about how the size of the allo
ation is obtained30

Feature Size/ValueData
a
hesDL1
a
he 64 KB, blo
ksize 64 bytes, 2-way,3
y
lesL2
a
he 512 KB, blo
ksize 64 bytes,dire
t-mapped, 12
y
lesTLBs 128 entriesMain memoryPeak bandwidth 1.6Gbytes/sRambus geometry 64 banks * 512 rows * 2KB/rowA

ess laten
y (
y
les) 32 PRER + 24 ACT + 48 RD/WR+ queuingOut-of-order Pro
essorPipeline width 4Int ALUs, multipliers 4,4FP ALUs, multipliers 1,1Bran
h predi
tor Tournament, 1 KB x 1 KB lo
al,4 KB global, 4 KB
hoi
eTable 3.1: Details of the simulated Alpha 21264-like pro
essor and memoryhierar
hyfrom the arguments to the allo
ation routine. We began by performing just
a
he simulation, but migrated to a full-s
ale timing simulator in order tobe able to estimate IPC improvements due to optimizations for spe
i�
 datastru
tures. Finally, we used a detailed and validated out-of-order pro
essorsimulator be
ause Pai et al. showed that an out-of-order pro
essor presents tothe memory hierar
hy a very di�erent sequen
e of memory a

esses than anin-order pro
essor [70℄.
31

Ben
hmark IPC DL1 L2Miss-rate Miss-rate164.gzip 1.39 2.3 3.9175.vpr 0.67 3.0 35.3176.g

 1.15 3.2 10.4177.mesa 1.06 0.9 23.4179.art 0.23 14.8 74.9181.m
f 0.14 24.1 60.5183.equake 0.58 14.1 29.4186.
rafty 1.21 1.3 4.3188.ammp 0.57 10.0 45.0197.parser 0.97 3.6 21.5256.bzip2 1.16 2.1 32.6300.twolf 0.51 9.5 26.9sphinx 0.58 15.8 41.9Table 3.2: The ben
hmarks we use and their aggregate memory hierar
hybehavior3.3 Methodology: Ben
hmarks, inputs and simulationperiodsWe now des
ribe our methodology for the experiments in this disserta-tion, in
luding simulated ma
hine
on�gurations, ben
hmarks and simulationinterval sele
tion. We use a version of the sim-alpha [25℄ timing simulatormodi�ed to
onsume the DTra
k instrumentation and maintain
a
he and TLBstatisti
s by data stru
ture. Figure 3.1 shows the baseline
on�guration wesimulate, in
luding a Rambus memory model. Table 3.2 lists some aggregateproperties of the ben
hmarks we study, in
luding average instru
tions per
y-
le (IPC) and miss-rates at the level-1 data (DL1) and level-2 (L2)
a
hes. Ourben
hmarks range from regular ones su
h as 179.art to highly irregular ones32

su
h as 300.twolf, from
ompute-bound (164.gzip) to memory-bound (181.m
f).We are unable to study the remaining 3 C ben
hmarks in the SPEC2000 suitedue to methodologi
al diÆ
ulties; 253.perlbmk no longer builds on our Alphaplatform with the latest version of lib
, and 254.gap and 255.vortex run in
or-re
tly on our native Alpha platform be
ause of unaligned addresses generatedby their
ustom memory-managers. While these unaligned addresses
ouldbe �xed by modifying the ben
hmark sour
es, we estimate that adding thene
essary padding
ould signi�
antly perturb ben
hmark behavior. All oursimulations use the designated ref input set for the
orresponding ben
hmark.Simulation intervals: We used two sets of simulation intervals for our sim-ulations. First, for the study of global phase behavior in the next
hapter wesimulated ea
h of our appli
ations to
ompletion. To keep experiment dura-tions reasonable we partitioned the total run-time for ea
h appli
ation into
hunks of 1 billion instru
tions, and performed a set of simulations in parallelon a
luster of Linux workstations managed by Condor [57℄. Ea
h simula-tion performs fun
tional simulation for a staggered duration, then performsdetailed timing simulation for 1 billion instru
tions. We then aggregated theresults of all these simulations o�ine to generate phase data for the entireappli
ation.In prin
iple, our parallel approa
h
an introdu
e errors due to the
old
a
hes that appear every billion instru
tions. All but one or two billion-instru
tion samples in ea
h of our ben
hmarks en
ounter at least 6.7 million33

misses in the DL1 and 0.4 million misses in the L2. Only 164.gzip and 177.mesaoften have less than 2.8 million L2 misses per billion-instru
tion sample. Sin
ethe error due to extra
ompulsory misses is a maximum of 512 misses in theDL1 and 8192 misses in the L2 in every billion instru
tions, the fra
tion ofextra
ompulsory misses we introdu
e is no more than 0.05% in the DL1 and1.8% (0.2% ex
luding mesa and gzip) in the L2.The results of these experiments, when
orrelated with high-level loops,yielded the major outermost loops that
onstitute more than 90% of the ex-e
ution of ea
h of our appli
ations. For all our experiments ex
ept for phasebehavior we then sele
ted one iteration of this outermost loop, demar
atingthe start and end of this iteration by a spe
ial `marker' op
ode using the te
h-niques outlined above, performing fast fun
tional simulation until we rea
hthis op
ode, and detailed timing simulation thereafter until rea
hing the endmarker. These simulation periods have been veri�ed to be representative ofea
h appli
ation's runtime and aggregate
a
he miss behavior.The ex
eptions to this methodology are the appli
ations 176.g

, 186.
rafty,197.parser, and sphinx, for whi
h we were unable to generate global phase datadue to infrastru
tural issues. For these appli
ations we determined the endof initialization by inspe
ting their sour
e
ode and simulated 500 million in-stru
tions past this point.
34

16
4.

gz
ip

17
5.

vp
r

17
6.

gc
c

17
7.

m
es

a
17

9.
ar

t
18

1.
m

cf
18

3.
eq

ua
ke

18
6.

cr
af

ty
18

8.
am

m
p

19
7.

pa
rs

er
25

6.
bz

ip
2

30
0.

tw
ol

f
sp

hi
nx

0

20

40

60

80

100

DS1
DS2
DS3
Stack
Other

a. DL1 Accesses (Normalized)

16
4.

gz
ip

17
5.

vp
r

17
6.

gc
c

17
7.

m
es

a
17

9.
ar

t
18

1.
m

cf
18

3.
eq

ua
ke

18
6.

cr
af

ty
18

8.
am

m
p

19
7.

pa
rs

er
25

6.
bz

ip
2

30
0.

tw
ol

f
sp

hi
nx

0

20

40

60

80

100

DS1
DS2
DS3
Stack
Other

b. DL1 Misses (Normalized)

Figure 3.2: De
omposition of DL1 misses and a

esses by data stru
ture. L2misses show similar trends to DL1 misses.
35

3.4 Results: Data pro�les and distributionsHaving des
ribed DTra
k and our experimental methodology, we nowpresent a detailed
hara
terization of the above SPEC ben
hmarks using DTra
k.We begin by studying basi
 data pro�les generated by DTra
k, and then ex-plore two ways that this new
apability to visualize the behavior of di�erentdata stru
tures
an be used to help answer sophisti
ated ar
hite
tural ques-tions. DTra
k generates data pro�les. Figure 3.2 breaks down the aggregatememory behavior of our appli
ations { a

esses and miss-rates at the DL1 andL2 { by the three data stru
tures that
ause the most DL1 misses (DS1, DS2,DS3), the sta
k, and everything else. Figure 3.2.a shows that the breakdownof a

esses to the DL1 (and therefore the rest of the memory hierar
hy) variesgreatly a
ross our appli
ations. While 179.art and 181.m
f have skewed dis-tributions, with 80% of all a

esses
oming from 2 data stru
tures, 300.twolf,176.g

 and 186.
rafty have extremely balan
ed distributions; no data stru
-ture
ontributes more than 2% of a

esses, and it takes 60{100 distin
t datastru
tures to a

ount for 90% of
a
he misses. Other appli
ations lie betweenthese extremes.While a

esses are often spread out, Figure 3.2.b shows that missestend to
luster. The top 5 data stru
tures usually
ontribute more than 90%of all DL1 misses. The ex
eptions are 176.g

, 186.
rafty, and 197.parser witha long tail of minor data stru
tures that respe
tively end up a

ounting for84%, 67% and 78% of all
a
he misses. Among the other appli
ations, the36

Name Type A

ess Footprint Obje
t164.gzipwindow Array Regular 64KB 2 bytesprev Array Regular 64KB 2 bytesinbuf Array Regular 184320KB 1 byte175.vprrr node Array Irregular 10638KB 40 bytesrr heap Array Irregular 6717KB 24 bytesrr node route inf Array Irregular 2653KB 16 bytes176.g

reg last sets Array Irregular 0.5KB 8 bytesreg last uses Array Irregular 0.5KB 8 bytesqty
onst insn Array Irregular 4KB 8 bytes177.mesaImage Buffer Array Regular 2560KB 2 bytesDepth Buffer Array Regular 5120KB 4 bytesVertex Buffer Array Regular 920KB 920KBTable 3.3: Details for some of the major data stru
tures in Figure 3.2.major data stru
tures end up partitioning
a
he misses among themselves ina variety of ways; the top data stru
ture
an
ontribute anywhere between 20and 80% of total
a
he misses.Comparing Figures 3.2.a and 3.2.b, we see that
a
he misses and a
-
esses are poorly
orrelated. A few appli
ations su
h as 179.art and 181.m
freveal a simple underlying organization with only a few data stru
tures, andmisses tra
king the distribution of a

esses. However, the majority of appli-
ations show a well-understood pattern where a data stru
ture re
eives morea

esses than another, yet a

ounts for fewer misses. As expe
ted, the sta
ka

ounts for a signi�
ant fra
tion of a

esses without ever presenting a signif-37

Name Type A

ess Footprint Obje
t179.artf1 layer Array Regular 625KB 64 bytesbus Array Regular 859KB 8 bytestds Array Regular 859KB 8 bytes181.m
fnodes Array Regular & irregular 7071KB 120 bytesar
s Array Irregular 188416KB 64 bytesdummy ar
s Array Irregular 3771KB 64 bytes163.equakeK 3D Array Regular 22399KB 8 bytesdisp 3D Array Regular 2828KB 8 bytesM 3D Array Regular 943KB 8 bytes186.
raftyrook atta
ks Array Irregular 127KB 8 byteslast ones Array Irregular 64KB 1 bytefirst ones Array Irregular 64KB 1 byteTable 3.4: Des
riptions of the major data stru
tures in Figure 3.2 (
ont'd).i
ant problem to the DL1. The sole ex
eption is 186.
rafty where the sta
k
olle
tively
ontributes more misses than any single global data stru
ture. Aswe have seen, however, 186.
rafty has a very balan
ed distribution, and thesta
k still a

ounts for only 11% of DL1 misses.3.5 Data stru
ture detailsSo far we have looked at di�eren
es in miss distribution a
ross the majordata stru
tures in the di�erent SPEC ben
hmarks while hiding details aboutthe individual data stru
tures behind the anonymous names DS1, DS2 and38

Name Type A

ess Footprint Obje
t188.ammpatoms Pointer Regular & irregular 41322KB 2208 bytesnodelist Array Regular 76KB 232 bytesatomlist Array Regular 4372KB 232 bytes197.parserConne
tor Various Irregular variable 24 bytesDisjun
t Various Irregular variable 40 bytestable Various Irregular variable 40 bytes256.bzip2blo
k Various Irregular 900KB 1 bytequadrant Various Irregular 1800KB 2 byteszptr Various Irregular 3600KB 4 bytes300.twolfnet array[℄!netptr Pointer Irregular 253KB 48 bytestmp rows Array Irregular 34KB 1 byterows Array Irregular 34KB 1 bytesphinxModel Array Irregular 3343KB 168 byteshmms Array Irregular 3531KB 76 bytesTable 3.5: Des
riptions of the major data stru
tures in Figure 3.2 (
ont'd).DS3. Tables 3.3{3.5 summarize the high-level details of these data stru
tures.For ea
h ben
hmark, we show the name of these data stru
tures as used inthe sour
e
ode, along with a brief summary of the type of the data stru
ture(array or re
ursive), whether it is predominantly a

essed in a regular fashionwith spatial lo
ality or in an irregular fashion with low spatial lo
ality. Finally,we provide the size of ea
h obje
t in these data stru
tures and their total sizesin the appli
ation.The major data stru
tures are predominantly array-based in the appli-39

ations we study. However, these data stru
tures are often used to emulate
omplex graphs using either real pointers (181.m
f:nodes, 175.vpr:rr node)or integers that index into other arrays (256.bzip2:quadrant, 300.twolf:rows).The wide variety of uses indi
ate that data stru
tures are often de
lared tobe arrays solely to simplify memory management. Most of the major datastru
tures are dynami
ally allo
ated on the heap. The major ex
eptions are186.
rafty that
auses a signi�
ant fra
tion of misses to the global segment,and 176.g

 whi
h allo
ates most of its variables on the sta
k using allo
a.We now examine the wide variety of patterns by whi
h these data stru
turesare a

essed.3.6 Data stru
ture a

ess patternsThis detailed de
omposition provides a glimpse into the array of be-haviors shown by the di�erent data stru
tures in a single appli
ation, rangingfrom uniformly regular or irregular a

ess a
ross all major data stru
tures toa
ombination of a

ess patterns for di�erent data stru
tures. There is nopattern in fra
tion of footprint or total a

esses that these data stru
tures o
-
upy. A data stru
ture's a

ess and miss rank is often not the same, and thedistribution of misses among the major data stru
tures varies widely a
rossappli
ations. A

ounting for 90% of DL1 misses requires between 2 and 25distin
t data stru
tures for di�erent programs. Finally, appli
ations whereirregular a

esses dominate - su
h as m
f - show synergisti
 e�e
ts betweendata stru
tures; improving multiple data stru
tures simultaneously does sig-40

//
omplex termination
ondition not shownloop for
ell =
array[$random℄:if
ell->
lass == -1:
ontinueblkptr = barray[
ell->
blo
k℄ // 8 bytestile =
ell->tileptr // 16 bytesterm = tile->termsptr // 64 bytesloop 3 times:loop until term is null:net = term->neta = netarray[net℄ // 128 bytesb = term->termptr // 64 bytes
 = tmp_rows[net℄ // 8 bytesd = rows[net℄ // 8 bytesterm = term->nextterm // 64 bytesendendendFigure 3.3: Case study: Sequen
e of obje
ts tou
hed by one of the main loopsin twolf. Size of ea
h obje
t in
omments.ni�
antly better than just improving ea
h of them in isolation. As we willshow, irregular appli
ations often exhibit di�erent a

ess patterns for ea
hdata stru
ture in a single phase,
ombining spatial, pointer and indire
t array-index a

ess. This interleaving of di�erent types of a

ess is a
hallenge forprefet
hing methods that fo
us on just one type of a

ess pattern [23, 44℄.While 179.art and 183.equake have regular a

ess patterns, the oth-ers interleave spatial and pointer a

ess in
omplex ways. This interleavingmay happen for three reasons. First, the appli
ation may perform strided41

a

ess through an array while dereferen
ing pointer �elds from ea
h element(m
f:nodes, 188.ammp:atoms). Se
ond, the appli
ation may perform strideda

ess that uses the elements of one array to index into another (bzip2:quadrant,300.twolf:rows). This is a form of pointer traversal that
urrent pointer prefet
h-ing s
hemes [23, 76℄ often
annot dete
t. Finally, the appli
ation may a
-
ess the elements of a data stru
ture in irregular order, but ea
h obje
t mayspan multiple
a
he blo
ks that are a

essed sequentially (ammp:nodelist,twolf:netptr) due to large obje
t size or irregular obje
t alignment in the
a
he. Su
h
omplex interleavings are a
hallenge to both spatial and pointer-based prefet
h systems.A

ess-pattern
ase study: We now perform a more detailed analysisto illustrate the potential for improvement from overlapping memory laten
yand the
hallenges in
onverting this potential. We fo
us on just one of ourben
hmarks - twolf - and look in its sour
e
ode for insight into its behavior.Guided by the data pro�le in Figure 3.2 and by the more
onventional
odepro�le, our study yields Figure 3.3, the sequen
e of obje
ts a

essed in a
ru
ialinner loop in twolf, responsible for 55% of all DL1 misses. This loop illustratestwo interesting phenomena. First, while programs as a whole often have alarge footprint, the footprint of ea
h loop iteration in an irregular appli
ation�ts easily in the DL1. Se
ond, most misses in appli
ations o

ur on the �rsta

ess to an obje
t in a loop iteration.Sin
e di�erent data stru
tures
an a

ess memory with a wide variety42

of a

ess patterns in a single program phase, it is important for the system tooptimize ea
h a

ording to its needs. Ea
h loop iteration has a small footprint,so it is feasible to prefet
h future iterations without disturbing the data for the
urrent iteration. However, prefet
hing the data required for ea
h iteration is
hallenging be
ause it in
ludes elements from di�erent data stru
tures withdistin
t a

ess patterns. Taken together, these insights suggest a model wheredata streams into the pro
essor in bundles of obje
ts that ea
h iteration willuse. In the latter half of this dissertation we explore TwoStep, a
on
reteimplementation of this model.Having used the basi

apabilities of DTra
k to
hara
terize our appli-
ations, we now explore novel uses of DTra
k in asking and answering sophis-ti
ated questions on ar
hite
ture design.3.7 Case study: Data stru
ture
riti
alityOur �rst
ase study
on
erns
riti
ality of memory referen
e. Severalre
ent studies have shown that not all
a
he misses are equally important asmeasured in the amount of laten
y that they expose to the pro
essor [92℄.In this
ontext, does it make sense to simply use miss
ounts to sele
t thedata stru
tures on whi
h to fo
us our attentions? To answer this questionwe augment DTra
k to dete
t
y
les when no instru
tions are retired, andassign responsibility for ea
h su
h stall
y
le to the data stru
ture referen
edby the load or store at the head of the reorder bu�er [91℄. Our results showthat for our appli
ations the data stru
tures that
ause the most misses are43

16
4.

gz
ip

17
5.

vp
r

17
6.

gc
c

17
7.

m
es

a
17

9.
ar

t
18

1.
m

cf
18

3.
eq

ua
ke

18
6.

cr
af

ty
18

8.
am

m
p

19
7.

pa
rs

er
25

6.
bz

ip
2

30
0.

tw
ol

f
sp

hi
nx

0

20

40

60

80

100

DS1
DS2
DS3
Stack

a. DL1 Miss-Rate (%)

16
4.

gz
ip

17
5.

vp
r

17
6.

gc
c

17
7.

m
es

a
17

9.
ar

t
18

1.
m

cf
18

3.
eq

ua
ke

18
6.

cr
af

ty
18

8.
am

m
p

19
7.

pa
rs

er
25

6.
bz

ip
2

30
0.

tw
ol

f
sp

hi
nx

0

20

40

60

80

100

DS1
DS2
DS3
Stack

b. L2 Miss-Rate (%)

Figure 3.4: De
omposition of DL1 and L2 miss-rates by data stru
ture. Theaggregate miss-rate for ea
h appli
ation is denoted by a horizontal line.
44

almost always also the ones responsible for the most stall
y
les. There are twoex
eptions to this trend. The �rst is in 179.art; the array tds
auses only 2.1%of all
a
he misses, but is responsible for 16.6% of all stall
y
les. This datastru
ture is
riti
al be
ause of the following loop that a

umulates a subset ofits elements:for (tj=0;tj<numf2s;tj++) {if ((tj == winner)&&(Y[tj℄.y > 0))tsum += tds[ti℄[tj℄ * d;} This
ombination of data-dependent bran
hes and
omputation seri-alized by tsum
auses the infrequent
a
he misses in this loop to almost in-variably stall the pipeline. Our
on
lusion is strengthened by a study of thesour
e
ode. 179.art is a neural network simulator where learning o

urs byiteratively modifying two arrays of top-down and bottom-up weights { tds andbus respe
tively. While these two arrays are largely a

essed in very similarways, the above loop is the only major a

ess pattern not shared with bus.The se
ond data stru
ture that we observe
ausing a disproportionate num-ber of stalls is the variable sear
h in the
hess-playing ben
hmark 186.
rafty,whi
h is responsible for 10.5% of all stall
y
les in spite of
ausing just 0.2% ofall
a
he misses. This global data stru
ture
ontains the
hess position being
urrently analyzed, and is used to display the board on s
reen. With the ex-
eption of these two data stru
tures, the
orrelation between miss
ount and45

stall
y
le
ount shows that data-stru
ture
riti
ality is of limited usefulnessin the predominantly irregular programs that we study.A related idealized experiment that provides indire
t
on�rmation ofthis result explores the e�e
t of sele
tively providing di�erent data stru
turesperfe
t single-
y
le a

ess to memory. To model this ideal behavior, we sim-ulate
a
he misses to spe
i�
 data stru
tures in a single
y
le, but
ontinueto move data in these stru
tures through the memory hierar
hy so as to notgive other data stru
tures an unrealisti
ally generous view of
a
he
apa
ity.We �nd that sele
tively eliminating
a
he misses in even the most importantdata stru
ture in an appli
ation has limited impa
t on performan
e in a ma-jority of our appli
ations. While there are a few ex
eptions, namely 188.ammp,183.equake, it usually requires perfe
t memory for 2-5 major data stru
turesto bring performan
e
lose to ideal. This result shows that future ar
hite
-tural and
ompiler enhan
ements will often need to optimize multiple datastru
tures in di�erent ways to signi�
antly improve overall performan
e inmemory-bound appli
ations. It also shows that DTra
k is indeed highlight-ing bottlene
ks in the memory system when it ranks data stru
tures by missfrequen
y.3.8 Case study: Competition for
a
hesWhile Figures 3.2.a and 3.2.b show the distribution of a

esses to theDL1 and L2, Figures 3.4.a and 3.4.b show the
orresponding miss-rates atea
h level of the memory hierar
hy. A
ommon pattern in these �gures is for46

16
4.

gz
ip

16
5.

vp
r

17
6.

gc
c

17
7.

m
es

a
17

9.
ar

t
18

1.
m

cf
18

3.
eq

ua
ke

18
6.

cr
af

ty
18

8.
am

m
p

19
7.

pa
rs

er
25

6.
bz

ip
2

30
0.

tw
ol

f

0

50

100

diff
same

Evictions of useful data (Normalized)

Figure 3.5: Breakdown of premature evi
tions. Useful data is only infrequentlyevi
ted by a di�erent (di�) data stru
ture.a data stru
ture with fewer
a
he misses to have a higher miss-rate. This pat-tern o

urs as the major data stru
tures
ompete with ea
h other for limited
a
he
apa
ity, so that a data stru
ture that misses more often ends up witha larger fra
tion of the
a
he. While this is qualitatively a desirable response,su
h
ompetition may
ause suboptimal performan
e if di�erent data stru
-tures repeatedly evi
t ea
h other. If this behavior were found to be
ommon, a
omputer ar
hite
t may
onsider
reating split
a
hes [31℄ with stati
 mappingpoli
ies assigning ea
h data stru
ture to a spe
i�

a
he partition, or designing
a
hes to bypass data in
ertain regions of a program's address spa
e. Fig-ure 3.5 shows how often useful data in the
a
he is prematurely evi
ted bya di�erent data stru
ture as opposed to the same one. With the ex
eptionof 256.bzip2 the majority of premature evi
tions are
aused by
on
i
t withina data stru
ture, rendering a split
a
he by data stru
ture unne
essary for47

these appli
ations. This and the previous experiment are good examples ofthe ways that DTra
k
an help the
omputer ar
hite
t with design de
isionswhere traditional tools are unable to do so.3.9 SummaryAnalyzing our appli
ations by data stru
ture
on�rms and quanti�estwo nuggets of
onventional wisdom that fo
us our attention in the rest of thisdissertation:1. \Appli
ations are not all alike." The number of data stru
tures that
ontribute 90% of an appli
ation's
a
he misses varies from 2 to 100.Appli
ations with similar aggregate DL1 miss-rates of 20%
an exhibitmiss-rates of 2-40% for important data stru
tures. The wide variety ofbehaviors, and the fa
t that not all appli
ations have hot data stru
tures,
on�rms the need for appli
ation-spe
i�
 system adaptation.2. Extremely irregular a

ess patterns may be found in the wild. 181.m
fperforms bounded depth-�rst-sear
h over sub-trees; 300.twolf and 256.bzip2perform lots of indire
t array a

ess; 188.ammp interleaves random pointertraversals with spatial a

ess over ea
h 2KB obje
t. As a result,
a
hemisses largely o

ur on the �rst a

ess to an obje
t in a loop iteration,and predi
ting the obje
t ea
h iteration will a

ess
an be diÆ
ult.The
ombination of these insights leads us to a prefet
h system biased towards
omplex a

ess patterns. Sin
e the footprint of any given loop iteration is48

tiny relative to
a
he
apa
ity, we fo
us on or
hestration at the loop iterationgranularity.In addition to these insights, DTra
k in
uen
es the rest of this disserta-tion in two methodologi
al ways. First, it provides valuable infrastru
ture fordebugging optimizations as we des
ribe later. Se
ond, our analysis of
riti
alloads in Se
tion 3.7 suggests a metri
 to evaluate optimizations in s
hedul-ing - redu
tion in stall
y
les. S
heduling does not eliminate
a
he misses forirregular programs without mu
h spatial lo
ality. Thus,
a
he miss
ountsand rates should remain un
hanged in the presen
e of prefet
hing. Measuringredu
tion in stall
y
les provides a solution to this problem, quantifying thelaten
y toleran
e of a prefet
hing approa
h. One additional wrinkle is that
riti
al paths
an be easily shifted by improvements or
hanges to the appli
a-tion [28, 92℄. This suggests re�ning our metri
 to stall
y
le redu
tion by datastru
ture, whi
h gives us a ri
her pi
ture of how well a te
hnique addressesthe per
eived problem, and also of how mu
h speedup we obtain before hittingthe next bottlene
k.In the next
hapter, we extend these insights to phase behavior, againusing novel methodology to quantify phase variation in a

ess patterns, andproviding key infrastru
ture for sele
ting good simulation intervals from a high-level perspe
tive. Our
hara
terization then drives the design of TwoStep,whi
h provides a parsimonious basis set of me
hanisms to give ea
h majorloop in an appli
ation a
arefully tuned prefet
hing strategy, spe
ifying whatto prefet
h, when to prefet
h it, and where to prefet
h it to.49

Chapter 4Phase analysis
This
hapter extends our high-level
hara
terization of appli
ations byde
omposing appli
ation behavior by data stru
ture and global program phase,and by translating this de
omposition into a summary of major appli
ationa

ess patterns that is used in the design of TwoStep in the next
hapter. Inthe pro
ess, we make two
ontributions to the state of the art in phase analysismethodology.Phase behavior has re
eived mu
h attention in re
ent times [6, 52, 68,82℄, with the eventual goal of designing system hardware/software to adapt to
hanging appli
ation requirements. Studies using Basi
 Blo
k Ve
tors (BBVs)explore their uses in
lustering phases and dete
ting phase transitions in ano�ine [83, 84℄ and online [86℄ setting. One alternative to BBVs is the use ofprogram
ounter or Extended Instru
tion Pointer Ve
tors (EIPVs) [6℄. An-other alternative
onsists of more high-level metri
s based on
ode stru
ture,su
h as register use ve
tors or loop ve
tors [52℄. All these studies share a
ommon work
ow. They generate the variation of some metri
 (su
h as
a
hemiss-rate) over time, aggregated in some sampling period. They then try toidentify regions with `similar' behavior and the boundaries between su
h re-50

gions. All these studies su�er from two major drawba
ks:� They operate on aggregate phase data for dete
ting phase behavior.While this is suÆ
ient for some appli
ations, we show in Se
tion 4.1that it
an hide details of memory behavior.� They sele
t their sampling period in an ad ho
 fashion and use a sin-gle sampling period a
ross all their appli
ations to automati
ally dete
tphase boundaries [82℄. Nagpurkar et al. re
ently showed that the notionof phase boundaries is not absolute, and that the phase boundaries onepi
ks and the granularity at whi
h to view them depend on their even-tual purpose [68℄. This result suggests that automati
 phase-dete
tionalgorithms are deeply in
uen
ed by the sampling period at whi
h datais provided to them.Our methodology addresses both drawba
ks. In Se
tion 4.1 we use DTra
kto measure phase behavior on a data stru
ture basis. In Se
tions 4.2{4.4 wedemonstrate a new te
hnique based on spe
tral analysis that automates thepro
ess of sele
ting a good sampling period for phase data. Rather than pi
kan ad ho
 sampling period and then automati
ally determine phase boundariesat that granularity, we automate sampling period sele
tion to yield a phasegraph where global phase behavior is more readily apparent.Applying these two methodologi
al improvements, we quantify the phasebehavior for ea
h appli
ation at an appli
ation-spe
i�
 sampling period in Se
-51

16

12

8

4

0
600D

L1
 m

is
se

s
(m

ill
io

ns
)

Time (billions of cycles)

total
atoms

nodelist

Figure 4.1: Just tra
king total misses
an miss interesting e�e
ts. DL1
a
hemisses in aggregate and by data stru
ture in 188.ammp.tion 4.7. Our results show that data stru
tures have very di�erent a

ess pat-terns in di�erent phases; however all data stru
tures in an appli
ation largelyshare the same phase boundaries. We use this phase data in Se
tion 4.8 to de-termine the dominant a

ess patterns in ea
h appli
ation, a high-level insightthat is used to drive the design of the TwoStep prefet
hing system in the restof the dissertation.4.1 Analyzing phase behavior by data stru
tureStudying phase behavior by data stru
ture is important; looking at thetime-varying behavior of aggregate misses alone
an be misleading and hideimportant data stru
ture intera
tions. Figure 4.1 illustrates this: the datastru
tures atoms and nodelist in 188.ammp are
onsistently anti-
orrelated.As one in
reases the other de
reases and vi
e versa. Studying just the
urvefor total
a
he misses would miss this intera
tion and also underestimate thedegree to whi
h the appli
ation's behavior is
hanging under the surfa
e. The52

redu
ed amplitude
hanges also make automati
 phase dete
tion more diÆ
ult,as we explore later in this
hapter.This pattern is not un
ommon; six of the nine appli
ations we studyexhibit signi�
ant di�eren
es in data stru
ture miss distribution in di�erentphases. Therefore in the rest of the results in this
hapter we use our DTra
ktool
hain to generate time-varying miss-
ount or miss-rate data for individualdata stru
tures rather than for the aggregate appli
ation as a whole.4.2 Sampling period sele
tion: OverviewOur se
ond methodologi
al innovation is a te
hnique to view time-varying behavior at a sampling period that highlights global phase transitions.Our te
hnique is based on two insights from spe
tral analysis: that in
reasingsampling period is a pro
ess of aggregation that has a damping e�e
t, and thatglobal phase behavior
onsists of emphasizing rare (low-frequen
y) transitionsover
ommon (high-frequen
y) ones. Figure 4.2 shows the temporal variationin DL1 miss
ount for a single data stru
ture in 183.equake by aggregatingmiss
ount at three di�erent sampling periods: one sample every 10 million
y
les, one sample every 180 million
y
les, and one sample every 500 million
y
les. This �gure illustrates a general trade-o� for phase analysis, either of-
ine or online. O�ine, overly frequent sampling puts too many data pointson a graph, making global trends harder to dete
t. Online, frequent samplingin
reases overheads. Conversely, in
reasing sampling period too mu
h redu
esthe information
ontent to
lose to that of aggregate DL1 misses, defeating the53

20

0
20

D
L1

 m
is

se
s

(t
ho

us
an

ds
)

Time (billions)a: DL1 misses every10 million
y
les

1.2

0
20

D
L1

 m
is

se
s

(m
ill

io
ns

)
Time (billions)b: DL1 misses every180 million
y
les

3

0
20

D
L1

 m
is

se
s

(m
ill

io
ns

)

Time (billions)
: DL1 misses every500 million
y
lesFigure 4.2: Sele
ting a sampling period, step 1: Phase behavior
urves
orre-sponding to a stream (183.equake) at di�erent sampling periods. The
hallengeis to sele
t a sampling period that is neither too noisy (a) nor over-damped(
), but just right (b).purpose of phase analysis, whether o�ine or online. We would like to avoidboth
lasses of degenerate data
olle
tion.We begin our des
ription of this pro
ess by outlining the various stagesinvolved in our o�ine methodology, and by introdu
ing some terminology inthe pro
ess. First, we generate a stream of data-stru
ture-spe
i�
 data usingDTra
k at a low sampling period of one million
y
les. To model larger sam-pling periods we aggregate the points in this stream to generate various
urvessu
h as the ones shown in Figure 4.2. We then use a simple volatility metri
 |des
ribed in the next se
tion | to
ompute the volatility of these
urves, and
ombine the volatilities at di�erent sampling periods to generate a volatilitypro�le for the stream. This pro
ess is graphi
ally depi
ted in Figures 4.2{4.8.54

Volatility pro�les provide a
on
ise summary of the phase behavior of an ap-pli
ation at di�erent granularities; we show that they suggest good samplingperiods in a straightforward manner: low granularities with low volatilities.We now des
ribe ea
h stage in detail, dwelling on the intuitions behind ourdesign de
isions and the alternatives we
onsidered.4.3 Sampling period sele
tion: The volatility metri
Phase boundaries in a
urve are dramati

hanges in amplitude overtime. In sele
ting the right granularity to dete
t phase boundaries we wouldlike to highlight only the most important su
h dramati

hanges. Thus, thevolatility of a
urve should answer the question: what is the largest magnitudeof amplitude
hange
ommonly seen in the
urve? Let us begin by answeringthis question for the degenerate
ase: with a
urve
ontaining just two points.We denote the
urve
onsisting of the values X1, X2 in adja
ent time steps as[X1; X2℄.Volatility at a point: The
urve [1:1; 1:2℄ has mu
h lower volatility thanthe
urve [1; 10℄. This intuition is adequately
aptured by our
onventionalnotion of relative
hange, or growth. A variable that doubles between adja-
ent sampling intervals demonstrates higher volatility than one that grows orshrinks by 10%. We formalize this notion into the following volatility metri
at a given time step. Given a stream [X1; X2; X3 : : :℄, the volatility at ea
htime step is de�ned as: 55

Curve Point volatilities[1; 1; 1; 1; 1℄ f0; 0; 0; 0g[1; 1; 1; 1; 2℄ f0; 0; 0; 0:5g[1; 2; 1; 2; 1℄ f0:5; 0:5; 0:5; 0:5g[1; 10; 1; 10; 1℄ f0:9; 0:9; 0:9; 0:9gTable 4.1: Computing the point volatilities of some simple example
urves.gt = abs(Xt �Xt�1)max(Xt; Xt�1) (4.1)gt is similar to the
onventional notion of `growth', ex
ept that it issymmetri
: gt is 0.5 whether Xt has doubled (\grown by 100%") or halved(\shrunk by 50%") sin
e the last time step. This symmetry ensures that thevolatility between two values is the same regardless of whi
h
omes �rst. Bythis de�nition, the
urve [1; 10℄ has a volatility of 0:9, while the
urve [1; 1:2℄has a volatility of 0:1. Even more trivially, the
urve [1; 1℄ has a volatility of0.Summarizing the volatility of a
urve: Given the above formulationfor the volatility of a 2-point
urve, we
an now view a
urve with n points[X1; X2; X3 : : :℄ as a set of 2-point
urves f[X1; X2℄; [X2; X3℄ : : :g, and we
annow
ompute the point volatility for ea
h of these. Table 4.1 shows the pointvolatilities of some simple example
urves. Noti
e that ea
h point volatility liesin the open interval (0; 1), that equal adja
ent values yield a point volatilityof 0, and that rapid in
reases and de
reases in value
ause high volatilities.Figure 4.3 illustrates this pro
ess for a
urve with more points, showing the56

 0

 1

20

V
ol

at
ili

ty

Time (billions)a: 10 million
y
les 0

 1

00
V

ol
at

ili
ty

Time (billions)b: 180 million
y
les 0

 1

20

V
ol

at
ili

ty

Time (billions)
: 500 million
y
lesFigure 4.3: Sele
ting a sampling period, step 2: Corresponding point volatili-ties for ea
h point in the graphs of Figure 4.2.
orresponding point volatilities gt for the
urves in Figure 4.2.Summarizing the volatility of these 2-point
urves is an exer
ise instatisti
s, and there are many
andidate ways to do so, starting with simpleones su
h as mean, median and mode. To sele
t a good method of sum-marization, re
all that the goal is to determine the largest volatility that is
ommonly seen in the
urve. This requirement
an be broken down into twosub-requirements: �rst, that all
ommonly o

urring volatilities be
onsid-ered in our aggregation; and se
ond, that rare volatilities not be
onsidered.Figure 4.4 provides an alternative way to formulate our requirement:
urveswith similar magnitudes of high-frequen
y noise must have the same volatil-ity, regardless of their low-frequen
y phase behavior. Let us
onsider the threesimplest alternatives for aggregating point volatilities in the light of these re-quirements: 57

D
L1

 m
is

se
s

Time

D
L1

 m
is

se
s

TimeFigure 4.4: Property of a good volatility metri
: both these
urves shouldhave the same volatility, as an indi
ation of how mu
h noise is added by the
ommon transitions, while ignoring the rare transitions.� Mean. The mean of a set of values is sensitive to infrequent outliers.This violates our se
ond
onstraint. It
an also
ause a set of high pointvolatilities to be `smeared down' into a lower value in the aggregate. Forinstan
e, the set of point volatilities f0; 0; 0:5; 0:5g translates to an aver-age of 0:25 whi
h underestimates the
ommon volatility of 0:5, violatingour �rst
onstraint.� Median. Consider the set of point volatilities f0; 0; 0:25; 0:5; 0:5g. Themedian 0:25 violates our �rst
onstraint: 0:5 is larger and
ommon.� Mode. The median is
ompletely unrelated to our requirements and dra-mati
ally in
orre
t for sets with balan
ed frequen
ies: f0; 0; 0; 0:9; 0:9; 0:5gwould yield 0, violating both of our
onstraints.Thus, none of these are suitable. However, this qui
k thought experimentyields one major insight: that we need to �x pre
isely what we mean by `
om-58

 0

 1

1000

V
ol

at
ili

ty

Percentile (%)a: 10 million
y
les 0

 1

 0 100

V
ol

at
ili

ty

Percentile (%)b: 180 million
y
les 0

 1

0

V
ol

at
ili

ty

Percentile (%)
: 500 million
y
lesFigure 4.5: Sele
ting a sampling period, step 3: Sort the point volatilities forea
h graph in Figure 4.3. The volatility of the
urve is de�ned as the pointvolatility at the 90th per
entile.mon' or high-frequen
y. While mean and mode entirely fail to
apture ourrequirements, the problem with using the median is relatively minor, and is
orre
ted by in
reasing the per
entile at whi
h to pla
e the maximum bound.Thus, sele
ting the median or 50th per
entile
ould miss a higher point volatil-ity that o

urs nearly 50% of the time, sele
ting the 70th per
entile
ould missa higher point volatility that o

urs at most 30% of the time, and so on. Weempiri
ally �nd that sele
ting the 90th per
entile, whi
h ex
ludes 10% of thelargest point volatilities, gives us a good measure of the largest and
ommon-est transitions in a
urve | the high-frequen
y noise. Thus, we generate thevolatility of a
urve from the set of its point volatilities by sorting the pointvolatilities in as
ending order and reading o� the point volatility o

urringat the 90th per
entile. Figure 4.5 illustrates this pro
ess for our running ex-ample
urves of Figure 4.3. In ea
h graph, the dotted line denotes the 90th59

 0

 1

 0 500
V

ol
at

ili
ty

Sampling period (millions)Figure 4.6: The volatility pro�le for the data stru
ture inbuf in 164.gzip,showing volatilities for
urves aggregating from 1 to 500 million
y
les worthof DL1
a
he misses together.per
entile and the point volatility at this per
entile is treated as the volatilityof the entire
urve.4.4 Sampling period sele
tion: Volatility pro�lesWe have thus far determined a suitable volatility metri
 quantifyingthe amount of high-frequen
y noise in a
urve. The next step is to use thisvolatility metri
 to determine a suitable sampling period for a given stream.To do so, we �rst
ompute the set of
urves
orresponding to the input streamwhen aggregated at di�erent sampling periods. For ea
h
urve we determinethe volatility as des
ribed above. Plotting the volatility of the
urve againstthe sampling period at whi
h it was gathered yields the volatility pro�le forthe underlying stream.Figure 4.6 shows one su
h volatility pro�le. Putting together ourmethodology in every stage so far, this graph is generated as follows. We
on�gure DTra
k to emit miss-
ount statisti
s by data stru
ture every 1 mil-60

lion
y
les and run 164.gzip on top of it. This experiment yields us a stream ofdata points
orresponding to the DL1 miss
ount for inbuf in every million-
y
le interval of exe
ution. Aggregating these data points in di�erent waysyields
urves for the DL1 miss
ounts every 2 million
y
les, every 3 million
y
les, and so on. We
ompute the volatility for every su
h
urve from sam-pling period of 1 million to 500 million
y
les, and plot the resultant volatilitiesagainst sampling period to yield the graph of Figure 4.6. The points on thisgraph with relatively low volatilities represent sampling periods where globalphase behavior is more salient and easily dis
erned. The next two se
tionsnow elaborate on the pro
ess of sele
ting a good sampling period given thedi�erent types of volatility pro�les.4.5 Results: Volatility pro�lesTo generate volatility pro�les for our appli
ations, we apply the pro-
edure from the previous se
tion on streams for DL1 and L2 miss
ount andmiss-rate of the most frequently missing data stru
tures as generated by themethodology outlined in Se
tion 3.3. A
ross the appli
ations we study, we �ndthat the DL1 and L2 miss
ounts for di�erent data stru
tures largely exhibitvolatility pro�les with the same trends, and with minima at the same samplingperiods. Therefore, we fo
us on the DL1 miss-
ount stream for a single majordata stru
ture in ea
h of our appli
ations. The left-hand graphs in Figures 4.7and 4.8 summarize the volatility pro�les for these data stru
tures.The volatility pro�les in Figures 4.7 and 4.8 may be
lassi�ed into61

three
ategories. First, 175.vpr, 179.art, 181.m
f, and 300.twolf show
onsis-tently low pro�les, so that an arbitrary sele
tion is likely to highlight globalphase behavior. Se
ond, 177.mesa, 183.equake, and 256.bzip2 exhibit mono-toni
ally de
reasing volatility pro�les as a result of the natural damping e�e
tsof aggregation with in
reasing sampling period. In these
ases we empiri
allysele
t the smallest sampling period with a volatility of less than 0:2. Thethird and �nal
ategory
onsists of 164.gzip and 188.ammp, appli
ations wherethe volatility pro�le is more
omplex. We explain these volatility pro�les ingreater detail in the next se
tion, and des
ribe our more ad ho
 methodologyto determine good sampling periods for these appli
ations.4.6 Explaining and handling non-monotoni
 volatilitypro�lesThe variety of volatility pro�les in Figures 4.7 and 4.8 bears somes
rutiny. We began this
hapter with the assumption that the damping e�e
tof aggregation would
ause volatility to monotoni
ally drop with in
reasingsampling period. However, our results show that this is not always the
ase;164.gzip and 188.ammp have parti
ularly
omplex, non-monotoni
 volatilitypro�les. These phenomena are explained by the dis
rete set of sampling pe-riods available to us, and the intera
tion of these dis
rete points with theintrinsi
 periodi
ity of an appli
ation.At a high level an appli
ation
onsists of nests of loops that a

ess dif-ferent data stru
tures in di�erent ways. The a

ess pattern of a given data62

a: inbuf in 164.gzip50 million
y
les
 0

 1

 0 500

V
ol

at
ili

ty

Sampling period (millions)

1

0
350D

L1
 m

is
se

s
(m

ill
io

ns
)

Time (billions of cycles)b: rr node in 175.vpr500 million
y
les
 0

 1

 500

V
ol

at
ili

ty

Sampling period (millions)

4.5

0
700D

L1
 m

is
se

s
(m

ill
io

ns
)

Time (billions of cycles)
: Depth Buffer in 177.mesa230 million
y
les
 0

 1

 500

V
ol

at
ili

ty

Sampling period (millions)

800

0
360D

L1
 m

is
se

s
(t

ho
us

an
ds

)

Time (billions of cycles)d: bus in 179.art140 million
y
les
 0

 1

 0 500

V
ol

at
ili

ty

Sampling period (millions)

800

0
980D

L1
 m

is
se

s
(t

ho
us

an
ds

)

Time (billions of cycles)e: nodes in 181.m
f40 million
y
les
 0

 1

 0 500

V
ol

at
ili

ty

Sampling period (millions)

2.5

0
2000D

L1
 m

is
se

s
(m

ill
io

ns
)

Time (billions of cycles)Figure 4.7: Volatility pro�les of some major data stru
tures in our appli
a-tions (left), and the
orresponding phase behavior (right) at one low-volatilitysampling period in the pro�le (spe
i�ed above ea
h right-hand graph).63

f: disp in 183.equake180 million
y
les
 0

 1

 0 500

V
ol

at
ili

ty

Sampling period (millions)

1.2

0
720D

L1
 m

is
se

s
(m

ill
io

ns
)

Time (billions of cycles)g: atomlist in 188.ammp1 million
y
les.
 0

 1

 0 6000

V
ol

at
ili

ty

Sampling period (millions)

140

0
600D

L1
 m

is
se

s
(t

ho
us

an
ds

)

Time (billions of cycles)h: zptr in 256.bzip2400 million
y
les
 0

 1

 0 500

V
ol

at
ili

ty

Sampling period (millions)

1.2

0
320D

L1
 m

is
se

s
(m

ill
io

ns
)

Time (billions of cycles)i: tmp rows in 300.twolf1 million
y
les
 0

 1

 0 500

V
ol

at
ili

ty

Sampling period (millions)

25

0
600D

L1
 m

is
se

s
(t

ho
us

an
ds

)

Time (billions of cycles)Figure 4.8: Volatility pro�les of some major data stru
tures in our appli
a-tions (left), and the
orresponding phase behavior (right) at one low-volatilitysampling period in the pro�le (spe
i�ed above ea
h right-hand graph).
64

350

0
360D

L1
 m

is
se

s
(t

ho
us

an
ds

)

Time (billions of cycles)Figure 4.9: The phase behavior of 177.mesa at 10 million
y
les. Comparewith Figure 4.7
.stru
ture in a given loop may
ontribute a
omponent with a
ertain approx-imate period to the phase behavior of the data stru
ture. Combining all theintera
ting periodi

omponents
orresponding to a data stru
ture yields theoverall phase behavior of that data stru
ture. If all the
omponents for a datastru
ture have relatively low time periods and high frequen
ies, we expe
taggregation at high sampling periods to smooth out their disparate periodi
e�e
ts. If a stream
ontains a
omponent with a substantial time period, how-ever, we observe a steeply os
illating volatility pro�le, with troughs at fa
torsand multiples of that time period.Su
h streams with
oarse-grained periods make it more diÆ
ult to se-le
t a sampling period, requiring volatility measurements at a large numberof values in order to �nd good
andidates. For example, if a stream is domi-nated by a period of 7 million
y
les, taking measurements at sampling periodin
rements of 10-million
ould fail to identify a good sampling period. Bythe time we �nd low volatility (at a sampling period of 70 million
y
les) we65

may have damped out all phase behavior. Understanding su
h intera
tionsin appli
ation phase behavior is a
hallenge for future resear
h. In the
on-text of this study, �nding a low-volatility sampling period required graduallyre�ning volatility measurements for 177.mesa and 188.ammp. As a
on
reteexample of this, Figure 4.9 shows the phase behavior seen for Depth Bufferin 177.mesa at a sampling rate of 10 million
y
les. Comparing this
urve withthat in Figure 4.7
 shows how widely dissimilar di�erent a stream
an look atdi�erent sampling periods, and how sele
ting a bad sampling period
an o
-
lude gradual periodi
 patterns. The global phase behavior seen in Figure 4.7
is only observable in a narrow window of sampling periods, from 200 to 300million
y
les. O�ine phase dete
tion te
hniques that fail to use samplingperiods in this range would show either too many phase transitions or too few,o

luding the more gradual phase behavior in either
ase. Similarly, onlinephase dete
tion te
hniques that fail to adjust the sampling period would beunable to adapt e�e
tively to the
hanging requirements of this appli
ation.Summary: The goal of the last 4 se
tions has been to
ome up with a rig-orous methodology to sele
t a good sampling period at whi
h to view andoperate upon graphs of temporal behavior. Our proposed methodology, basedon a volatility metri
, ful�lls this purpose by
on
isely summarizing the meritof every point in the state spa
e of possible sampling periods. The next step, ofsele
ting a good sampling period, is more ad ho
. The la
k of full automationis a result of one major fa
tor: eÆ
ien
y
onsiderations for
e us to maintain66

a lower bound on the granularity at whi
h we
an vary sampling period. In-tera
tions between this sampling period and intrinsi
 periodi
ities of di�erentstreams for
e us to manually inspe
t phase graphs for some appli
ations ata few low-volatility sampling periods before settling on the period with the
leanest expression of global phase behavior. Our general heuristi
, though,is to sele
t the lowest possible sampling period with a low enough volatility.This
orresponds to points to the bottom and left in our volatility pro�les.4.7 Results: Phase behavior at a good sampling periodHaving des
ribed in detail the pro
edure for sele
ting a good samplingperiod for ea
h of our appli
ations, we
an now study the phase behavior ofea
h appli
ation at this appli
ation-spe
i�
 sampling period. The right-handside graphs in Figure 4.7 and 4.8 summarize the phase behavior of the DL1miss
ount for one major data stru
ture in ea
h of our appli
ations. Ea
h ofthese graphs is labelled with its sampling period of N
y
les as sele
ted fromthe volatility pro�le on the left, and plots DL1 miss-
ount for a single datastru
ture per N
y
les.Our results
an be broken down into three
ategories. First, appli-
ations with no phase behavior past initialization: 179.art, 183.equake, and300.twolf. Se
ond, those with simple phase behavior between a well de�ned setof phases with easily-dis
erned boundaries: 164.gzip, 181.m
f and 188.ammp.Third, more
omplex
urves with poorly de�ned phases and fuzzy phase bound-aries: 175.vpr, 177.mesa and 256.bzip2.67

164.gzip (50 million
y
les)
1

0
350D

L1
 m

is
se

s
(m

ill
io

ns
)

Time (billions of cycles)

window
fd

175.vpr (500 million
y
les)
4.5

0
700D

L1
 m

is
se

s
(m

ill
io

ns
)

Time (billions of cycles)

rr_node
heap181.m
f (40 million
y
les)

4

0
2000D

L1
 m

is
se

s
(m

ill
io

ns
)

Time (billions of cycles)

nodes
arcs

Figure 4.10: Appli
ations with inversion: a di�erent data stru
ture
ontributesthe most misses in ea
h phase. (sampling period in parentheses)68

Categories 2 and 3 both
ontain appli
ations with phase inversions,where a di�erent data stru
ture
ontributes the most
a
he misses in ea
hphase. Figure 4.10 shows the phase behavior of the major data stru
tures inthose of our appli
ations with su
h inversions { 164.gzip, 175.vpr and 181.m
f.We use this data on phase transitions and inversions in these appli
ations todistill ea
h of our appli
ations down to a
on
ise des
ription of their majora

ess patterns.4.8 Results: Translating phase behavior into a

ess pat-ternsThe phase behavior of an appli
ation
an be used for a variety of pur-poses as detailed in the next se
tion. In this disseration we use it to help drivethe design of the TwoStep prefet
h system in the se
ond half of this disser-taion. Combining our insights from DTra
k with
ode pro�les allows us toidentify the di�erent a

ess patterns in ea
h phase, and the roles of di�erentdata stru
tures where inversions o

ur. By manually
orrelating
ode pro�les,the data pro�les generated by DTra
k, and the phase behavior data from theprevious se
tion, we are able to
on
isely summarize the major a

ess patternsin ea
h of our appli
ations.� 164.gzip
onsists of alternating phases that read a se
tion of input datainto a bu�er, and
ompress the
ontents of the bu�er. Both phases havesequential a

ess patterns with lots of spatial lo
ality.69

� 175.vpr
onsists of two data stru
tures: a heap of obje
ts, ea
h
ontaininga rr node. The heap is a

essed in a halving or doubling stride, whilerr nodes are more irregular. The interleaving of a

esses to the two ishighly data driven.� 179.art
onsists of two 2-D arrays: bus and tds. Both are a

essedsimultaneously and sequentially.� 181.m
f
onsists of alternating phases of depth-�rst-sear
h over a sub-tree of nodes, and heap sort over a heap of ar
s.� 183.equake
onsists of regular sequential a

ess over several 3-D arrays.� 188.ammp
onsists of a linked list traversal through atomlist, inter-spersed with a pass of mu
h more irregular a

ess every 12-15 iterationsin order to update 200 pointers to spatially neighboring atoms.� 256.bzip2 performs irregular indire
t array a

esses over three distin
tarrays | zptr, blo
k, and quadrant | using indi
es in one array toa

ess another.� 300.twolf
ontains a single phase with a
omplex a

ess pattern summa-rized earlier in Figure 1.2, interleaving spatial, pointer and indire
t arraya

ess.These a

ess patterns drive the design of several aspe
ts of the TwoStepprefet
h system in the se
ond half of this dissertation. These aspe
ts in
lude70

the basi
 insight that su
h a wide variety of te
hniques requires
ompiler-driven poli
ies to determine what to prefet
h, the design of the ISA for theTwoStep prefet
h
ontroller, a quantitative analysis of the timing
onstraintson dependent prefet
hes to determine that the
ontroller must be pla
ed atthe L2, and the need for auxiliary stru
tures and eÆ
ient
ow
ontrol in orderto perform prefet
hing into the DL1. We explain these
onsiderations in moredetail in the next
hapter.4.9 SummaryAs
omputers have be
ome
heaper and more a

essible the trend inthe last 30 years has been for appli
ations to grow more diverse (with new
at-egories like streaming media and personal produ
tivity), more
omplex (wordpro
essors
he
k grammar and also perform spee
h re
ognition and synthesis)and more memory-intensive. These trends are likely to
ontinue in future: thenumber of appli
ations running
on
urrently on a system, the variety of appli-
ations, and the variety of phase behaviors in an appli
ation are all likely toin
rease. In the fa
e of these trends, one-size-�ts-all heuristi
s are insuÆ
ient,and adaptive approa
hes in
rease in importan
e.Our response to these trends has been a detailed
hara
terization ofnine appli
ations with a wide variety of a

ess patterns, �rst de
omposing theiraggregate memory hierar
hy behavior by data stru
ture in the previous
hap-ter, and then further de
omposing these results by global program-exe
utionphase. Our detailed
hara
terization yields a
on
ise summary of the major71

a

ess patterns that we use to drive the design of TwoStep in the rest of thisdissertation.While we fo
us on a single appli
ation for this detailed
hara
teriza-tion, our novel methodology methodology
an be applied to systems resear
hin a variety of ways. In the past, identifying phase behavior has been useful inseveral areas, su
h as adaptively varying pro
essor issue width or
a
he
apa
-ity [6, 86℄. Our data shows that augmenting these past online approa
hes withways to adaptively tune the granularity of phase transition de
isions will in-
rease their e�e
tiveness. Tuning phase granularity online is an open problemthat will need to be addressed in future. In o�ine phase analysis,
ombin-ing prior implementations with data stru
ture de
omposition and the
orre
tsampling period
an provide a more rigorous framework for phase analysis andmore sophisti
ated insight into many areas of appli
ation behavior.

72

Chapter 5TwoStep: Pre
omputation-based prefet
hingwith lightweight throttling
Our study of data stru
tures and phase behavior in di�erent appli
a-tions shows the wide variety of a

ess patterns modern systems have to dealwith. The se
ond half of this dissertation des
ribes and evaluates our approa
hto appli
ation-driven prefet
hing, a pre
ise set of me
hanisms that allow indi-vidual appli
ations to be optimized at runtime a

ording to their needs anda

ess patterns. Our prefet
h system is
alled TwoStep. TwoStep
ombines
ompiler-generated pre
omputation threads, a prefet
h
ontroller in the L2that runs ahead of the main program, and lightweight me
hanisms for
ow-
ontrol and throttling. It is designed to work in the presen
e of truly
omplexa

ess patterns interleaving pointer and spatial a

ess that prior approa
heshave struggled with. In the rest of this
hapter, we des
ribe the
hallengespresented by su
h appli
ations to previous approa
hes, des
ribe the designde
isions that led to TwoStep, and provide initial results over a set of hand-
rafted kernels for four of our appli
ations in order to show the soundness ofthe basi
 mi
roar
hite
ture design.

73

5.1 Drawba
ks in past approa
hesA variety of me
hanisms have been used in prior prefet
hing studies.We now survey the prior work on prefet
hing in terms of its
onstituent me
h-anisms separated along four dire
tions: where a prefet
h originates, what toprefet
h, when to prefet
h it, and where to prefet
h to. The pro
ess of thesurvey re
apitulates the rationales for our design de
isions for TwoStep.Prefet
h origin: There are three broad
hoi
es in de
iding where prefet
hesshould originate: in the main pro
essor as part of the appli
ation program [12,41, 56, 59℄, in the main pro
essor as a separate thread [11, 66, 93℄, or in thelowest level of the
a
he hierar
hy fa
ing main memory [47℄. While the latterrequires more overhead and book-keeping to or
hestrate, it has an advantagethat DTra
k tells us is
ru
ial: it redu
es the laten
y between dependentprefet
hes. Sin
e prefet
hes have to go only one way from L2 to pro
essor,both baseline laten
y and queuing delay due to bandwidth
onstraints areminimized. The
ost is additional hardware
omplexity.What to prefet
h: There are 4 broad
hoi
es in de
iding what to prefet
h:addresses spatially
lose to re
ent addresses [12, 55, 59℄, re
ently-fet
hed
a
he-lines for pointers [23℄, pattern dete
tion tables (stride or address-
orrelation) inhardware [40, 41℄, and �nally
ompiler-generated addresses [56, 59℄. Of these,the �rst three are tuned to narrow varieties of a

ess-patterns; responding toarbitrarily
omplex a

ess patterns requires
ompiler intervention. The
ost is74

ompiler
omplexity. Also,
ompiler-based prefet
h s
hemes in the past haveoften struggled with the next de
ision of prefet
h timing.When to prefet
h: There are two opposing
onstraints on timing prefet
hes:prefet
hes need to o

ur early enough relative to use to overlap their entirelaten
y. They also need to o

ur
lose enough to the use not to evi
t moreproximally-useful data and
ause
a
he pollution. Past approa
hes on tim-ing prefet
hes have largely been
onstrained by the design de
ision of whatto prefet
h:
ompiler-based approa
hes [56, 59℄ have relied on the
ompilerto time prefet
hes as well, resulting in brittle strategies that
annot adaptto
hanging runtime requirements; hardware-based approa
hes [40, 41℄, havestruggled to issue prefet
hes early enough sin
e the mi
roar
hite
ture's view ismore lo
al than a
ompiler's. There has been re
ent work on issuing systemsof prefet
hes [55℄, often under
ompiler guidan
e [97, 99℄ rather than singleprefet
hes at a time in order to in
rease available sla
k. This approa
h is themost promising among the alternatives. However, the
hallenge is to meet
on
i
ting timing
onstraints without running into either the drawba
ks ofsoftware approa
hes (rigid strategies) or hardware ones (overhead in dete
t-ing and avoiding pollution). The prioritization de
ision between independentsequen
es of prefet
hes [22, 102℄
an also
ause design
omplexity.Where to prefet
h to: This de
ision presents 3 major options: prefet
h tothe L2, prefet
h to the L1 or prefet
h to an auxiliary stru
ture
onne
ted to the75

a
hes. Prefet
hing to the L1 is a
hallenge be
ause its small
apa
ities in
reasethe risk of pollution. As a result, most re
ent approa
hes have prefet
hed onlyto L2. Spatial prefet
h s
hemes have explored prefet
hing to an auxiliarystru
ture
alled a stream bu�er [42, 85℄ in order to avoid L1 pollution, butat the
ost of a slightly in
reased laten
y somewhere along the
riti
al pathof
a
he a

esses. Stream bu�ers impose ordering
onstraints on the use ofprefet
hes, however; as a result they have not been used with su

ess forirregular appli
ations.This analysis highlights the issues in prefet
hing for highly irregulara

ess patterns. We would like to have the
ompiler sele
t what to prefet
h butde
ouple the de
ision from prefet
h timing. We would like to issue prefet
hesfar in advan
e from the L2 but allow the pro
essor to
ontrol the prefet
hthread to avoid pollution. We would like to prefet
h to L1 but avoid pollution.Our key insight is that de
oupling ea
h prefet
h into 2 stages solves all theseproblems with low
ost in design
omplexity or overhead. We now des
ribeour aptly-named TwoStep prefet
h s
heme.5.2 An overview of TwoStepFigure 5.1 shows a high-level s
hemati
 for our TwoStep mi
roar
hite
-ture, highlighting the major
omponents of the prefet
h system - the prefet
h
ontroller in the L2, the FIFO between L2 and DL1, and ISA enhan
ementsto or
hestrate data transfer between FIFO and DL1. TwoStep performs long-range prefet
hing in the L2 under the dire
tion of a
ompiler-generated prefet
h76

Processor

DL1

����������������
����������������
����������������

����������������
����������������
��

L2

Main Program

Controller
Prefetch

Prefetch Program

Memory

FIFO

hints
ISA

Data

Control

critical path
unmodified

To L2

Instruction
Store

Register File

32 words

PC

Processor
loads

Figure 5.1: The TwoStep prefet
hing systemprogram, and short-range prefet
hing to or
hestrate the transfer of data intothe DL1 without polluting it. The L2 prefet
h
ontroller is a simple single-issuein-order pro
essor. A prefet
h program is loaded into the prefet
h
ontrollerwhen its
orresponding main program is loaded into the pro
essor. Prefet
hingis triggered when the main program rea
hes spe
i�
 program phases. At thestart of a program phase for whi
h the
ompiler de
ided to enable prefet
hing,
ompiler-inserted
ode in the main program initializes various registers in theprefet
h
ontroller, in
luding the prefet
h PC, and signals the
ontroller tobegin prefet
hing. At this point the prefet
h
ontroller begins exe
uting itsloaded program. Load instru
tion types in the prefet
h program (the mostfrequent
ategory)
ause the obje
t (with a stati
ally well-de�ned size) in theresult register to be prefet
hed. When su
h an address is not available in theL2, it is requested from main memory and the prefet
h program stalls until77

it returns. When it returns, the prefet
h
ontroller pushes the obje
t (a �xednumber of
a
he-lines) onto the FIFO between L2 and DL1 and then repeatsthe pro
ess for the next instru
tion in the prefet
h program. Obje
ts pushedto the FIFO wait to rea
h the head of the queue. Pull and load instru
tions inthe main program then respe
tively transfer the obje
t to the DL1 and startusing it. Data in the FIFO is virtually tagged, and the prefet
h
ontroller hasa

ess to a private TLB. TLB misses
ause the prefet
h program to stall justlike any other ex
eptional
ondition.Rationale: This design provides a better solution to several issues that are
hallenging to previous studies. The prefet
h program allows the
ompiler toeÆ
iently en
ode what must be prefet
hed, and to handle arbitrarily
om-plex
ombinations of interleaved spatial prefet
hing and pointer-
hasing. The
ompiler en
odes this information without
onstraining hardware on whento initiate prefet
hes, allowing hardware to manage resour
es better and is-sue prefet
hes in a timely manner when resour
es are free. In pra
ti
e, theprefet
h program is able to run far ahead of the main program. Running aheadis feasible be
ause there is no possibility of
a
he pollution, and the prefet
hprogram is throttled on a simple
ondition - when the FIFO �lls up. The �naltransfer between FIFO and DL1 is initiated by pull instru
tions at the start ofloop iterations that spe
ify only how many
a
he-lines to transfer, not what itmust
ontain. In the
ommon
ase, this allows the footprint of ea
h iterationto be brought into the DL1 ahead of its use. In the worst
ase, pull instru
-78

tions avoid deadlo
k when the FIFO
ontains useless data, while limiting thepollution in the
a
he to a stri
t upper bound. Prioritization is no longer anissue sin
e the
ompiler expli
itly sequen
es prefet
hes.5.3 The prefet
h
ontrollerWe now provide a detailed des
ription of the TwoStep mi
roar
hite
-ture in this and the next se
tion, enumerating alternatives and design de
isionsat important points. We designed TwoStep to be simple, with an orthogonaland parsimonious ISA, while making the
ompiler's
ode generation task easierand mat
hing the ISA to
ommon patterns seen in our
hara
terization usingDTra
k.We begin with the L2 prefet
h
ontroller, the point of origin of ea
hprefet
h in TwoStep. The prefet
h
ontroller re
eives two sets of inputs: aprefet
h program divided into kernels, and initial register values before runninga spe
i�ed kernel. The prefet
h program is loaded into the instru
tion store onappli
ation startup, while register initialization is performed under pro
essor
ontrol at the start of di�erent program phases. In the rest of this se
tion weassume both program and register values have been initialized, and des
ribethe work
ow for a single instru
tion in the prefet
h program. Initialization
onditions are spe
i�ed in the next se
tion.Table 5.1 des
ribes the ISA of the TwoStep prefet
h
ontroller. Theinstru
tions in TwoStep's ISA operate on 32 word-length integer registers, onePC register and immediate operands. TwoStep's workhorse instru
tions are79

Fmt Instru
tion Semanti
sarith 2 Æ 2 f+; �;%;&; jgf add;mul;mod; and; orgI arith Rd; Rs; offset; size Rd Rs Æ offset � 2sizeI arithp Rd; Rs; offset; size Rd Rs Æ offset � 2size; prefet
hRdII arith2 Rd; Rs; Rt; size Rd Rs ÆRt � 2sizeII arith2p Rd; Rs; Rt; size Rd Rs ÆRt � 2size; prefet
hRdI load Rd; Rs; offset; size Rd Rs + offset � 2size; prefet
hRd;Rd [Rd℄I loadp Rd; Rs; offset; size Rd Rs + offset � 2size; prefet
hRd;Rd [Rd℄; prefet
hRdII load2 Rd; Rs; Rt; size Rd Rs +Rt � 2size; prefet
hRd;Rd [Rd℄II load2p Rd; Rs; Rt; size Rd Rs +Rt � 2size; prefet
hRd;Rd [Rd℄; prefet
hRdIII jeq target; Rs; offset if Rs == offset: RPC = targetIV jeq2 target; Rs; Rt if Rs == Rt: RPC = targetIII jlt target; Rs; offset if Rs < offset: RPC = targetIV jlt2 target; Rs; Rt if Rs < Rt: RPC = targetIII jle target; Rs; offset if Rs <= offset: RPC = targetIV jle2 target; Rs; Rt if Rs <= Rt: RPC = targetnext ++ FIFO:tailInstru
tion formats (24-bit instru
tions):I Op
ode (5) Rd (5) Rs (5) size (3) offset (6)II Op
ode (5) Rd (5) Rs (5) size (3) Rt (5)III Op
ode (5) Rs (5) target (8) offset (6)IV Op
ode (5) Rs (5) target (8) Rt (5)Field details:Field Width (bits) En
oding Addressing modeRs; Rt; Rd 5 Unsigned Registeroffset 6 2's
omplement Immediatesize 3 2's
omplement Immediate[x℄ - Unsigned Indire
tTable 5.1: The ISA for TwoStep's prefet
h
ontroller.80

C statement TwoStep equivalent++i; add Ri; Ri; 1; 0
 = a + b; add2 R
; Ra; Rb; 0
 = &Arr[a℄; add2 R
; RArr; Ra; 0int Arr[℄;
 = Arr[a℄; load2 R
; RArr; Ra; 2 ==22 == sizeof(int)int* Arr[℄;
 = Arr[a℄; load2p R
; RArr; Ra; 2
 = &a ! fld; addp R
; Ra; offset(fld); 0
 = a ! fld; load R
; Ra; offset(fld); 0Obj*
;
 = a ! fld; loadp R
; Ra; offset(fld); 0Table 5.2: Some
ommon a

ess patterns translated into the TwoStep ISA.of two major varieties: arithmeti
 and load instru
tions. Both have a uniformformat: Op Rd; Rs; f; size (5.1)Ea
h instru
tion s
ales f by an obje
t-size fa
tor 2size,
ombines theresult with register Rs, and stores the result in register Rd. f may be eithera se
ond register (Rt) or a signed immediate operand (o�set). There are �vevarieties of arithmeti
 operations: arithmeti
 addition, multipli
ation, andremainder; and logi
al
onjun
tion and disjun
tion. Subtra
tion is providedusing negative o�sets, while logi
al left- and right-shifts are provided usingpositive and negative size exponents, respe
tively.A

essing main memory is the fundamental goal of TwoStep, and theISA provides two major ways to prefet
h data into the L2. The �rst is the loadinstru
tions, whi
h a
t like the
orresponding add instru
tion using indire
taddressing. Indire
t addressing is implemented by issuing an L2
a
he-line-81

// R1: root// R2: value being sear
hed.loop:jeq
ontinue, R1, 0load R3, R1, node_value, 0 // R3 = R1->value;jeq
ontinue, R3, R2jlt else, R3, R2then: load R1, R1, node_left, 0 // R1 = R1->left;jeq loop, R1, R1 // un
onditionalelse: load R1, R1, node_right, 0 // R1 = R1->right;jeq loop, R1, R1
ontinue:Figure 5.2: A simple TwoStep kernel to perform binary sear
h.aligned prefet
h to main memory if ne
essary, waiting for the prefet
h to re-turn, and then performing a simple
opy from L2 into Rd. Se
ond, arithmeti
and load instru
tions both have variants | denoted by the p suÆx | thatprefet
h the
ontents of Rd from main memory after
omputing Rd. These twote
hniques are
ombined in the loadp instru
tion, whi
h performs a simple add,prefet
hes Rd, performs the re
ursive indire
t a

ess Rd = [Rd℄, and prefet
hesRd again. These steps are performed serially, and ea
h step waits for prefet
hesto �nish exe
uting before pro
eeding to the next step. All prefet
hes are per-formed on virtual addresses; in our experiments, we use a physi
ally indexedphysi
ally tagged (PIPT) L2
a
he, and we therefore provide the prefet
h
on-troller with a TLB for translation. TwoStep prefet
hes are treated just likedemand fet
hes be
ause of their near-perfe
t a

ura
y | they are not pri-82

oritized di�erently, and they are fet
hed into the most re
ently used (MRU)way of the L2. Table 5.2 summarizes the di�erent varieties of prefet
hes pos-sible in the TwoStep ISA by mapping them to high-level C a

ess patterns.For example, addp
orresponds to strided prefet
h, while loadp
orresponds topointer prefet
h. The di�eren
e between add/load and addp/loadp is primarilywhether the destination op
ode is a pointer that is dereferen
ed in the
urrentkernel. In addition to arithmeti
 and load instru
tions, the TwoStep ISA
on-tains two additional instru
tions:
ontrol instru
tions and the novel next in-stru
tion. The
ontrol instru
tions are straightforward,
onsisting of two va-rieties of
onditional bran
h to target depending on
omparison between thetwo operands. The next instru
tion is used for
ow
ontrol and explained inthe next se
tion. Figure 5.2 shows a simple prefet
h program with a singlekernel | to perform binary sear
h.5.4 Flow
ontrol: pull and nextThe prefet
h
ontroller in the previous se
tion prefet
hes only to L2 and
an run arbitrarily far ahead of the main program on the pro
essor, in
reasingthe risk of
a
he pollution. In order to address both drawba
ks, we add a FIFOstru
ture between DL1 and L2, with a width of one DL1
a
he-line. Everyinstru
tion in the TwoStep ISA knows how many
a
he-lines it will prefet
hand only begins exe
ution if there is room for an equivalent number of DL1
a
he-lines in the tail of the FIFO. Ca
he lines in the head of the FIFO are83

onsumed by pull instru
tions in the main program, whi
h
onsume
a
he-lines from the head of the FIFO and transfer them into the MRU ways of theDL1,
ausing evi
tions as ne
essary. The �rst
a
he-line returned by a Pullinstru
tion takes 4
y
les, and every subsequent
a
he-line takes 1
y
le.The e�e
t of the pull instru
tion on
ow
ontrol is non-trivial. Theobvious option is to give a pull instru
tion the format pull x, where x is animmediate operand. However, su
h an approa
h implies that the number of
a
he-lines asso
iated with a loop iteration must be a stati

onstant. Everyprefet
hed loop must have the same
a
he footprint along all paths. There aretwo ways to maintain this invariant:1. Insert extra pulls at ea
h bran
h of
onditionals with unbalan
ed foot-prints. This approa
h introdu
es signi�
ant overhead in the instru-mented appli
ation sin
e nested
onditionals are extremely
ommon. Wequi
kly dis
arded this option.2. Rely on the
ompiler to
ount footprints along di�erent paths, to insertthe largest possible footprint for a loop, and to insert padding push in-stru
tions (addp < re
entregister >; 0) into some paths of the prefet
hprogram. This approa
h
auses extra overhead in the prefet
h program;as we show later, this overhead is not signi�
ant. However, it also
ausesunne
essary pulls throughout an appli
ation, and that signi�
antly im-pa
ts the laten
y of pulls into DL1. Another major drawba
k is the
84

in
rease in
ompiler
omplexity ne
essary to tra
k footprints for ea
hpath in a loop iteration.Sin
e neither option is e�e
tive, we
onvert the pull instru
tion to take noop
odes but instead maintain the
ount of
a
he-lines to pull in hardware.Our hardware for maintaining pull
ounts
onsists of two pie
es: a se
ond,
ount FIFO to maintain
ount information, and the next instru
tion in theTwoStep
ontroller ISA. Every push to the main FIFO from the prefet
hprogram in
rements the
ounter at the head of the
ount FIFO, while nextinstru
tions at the start of every loop iteration in the TwoStep prefet
h kernelbump up the pointer to the tail of the FIFO,
reating and initializing a new
ount. Pull instru
tions now read the head of the
ount FIFO to determine thenumber of
a
he-lines to transfer. The spa
e overhead for this enhan
ementis minor, a few bits for every
a
he-line of FIFO
apa
ity (< 32 bytes in thebaseline
ase). There is no time overhead sin
e the
ompiler guarantees the
ount to be at least 1, and reading the
ount FIFO
an be overlapped withthe transfer of the �rst
a
he-line.Abnormal situations: So far we have addressed the
ommon
ase in theexe
ution of a prefet
h kernel: the prefet
h kernel spends less time per iterationthan the main program and thus keeps the FIFO o

upied. Periodi
ally theFIFO �lls up and
auses the prefet
h program to stall until there is room.There are two abnormal ex
eptions to
onsider: when the prefet
h threadgenerates invalid prefet
hes, and when it falls behind the main program. The85

hallenge in ea
h
ase is �rst to maintain syn
hronization between main andprefet
h programs, and se
ond to avoid polluting the
a
he. Prefet
hes toinvalid addresses do not stall the prefet
h thread; instead the prefet
h threadinserts invalid
a
he-lines into the FIFO in order to maintain syn
hronization.When the prefet
h thread falls behind the main program the FIFO emptiesout. Subsequent pulls in
rement a
ounter when they are unable to pop itemso� the FIFO. The
ounter provides the prefet
h program with some sla
k to
at
h up with the main program, as future
alls to next prefet
hes de
rementthe
ounter rather than push items on the pull-
ount FIFO. If the
ounterdrops ba
k to zero the prefet
h thread
an start pushing items onto the FIFOagain. If the
ounter instead saturates to some maximum level, usually FIFO
apa
ity, the prefet
h thread is aborted.5.5 Maintaining
oheren
eTwoStep maintains a
opy of a program's data in the FIFO; it is pos-sible for this data to be
ome stale in some situations. For example,
onsider as
enario where the main program fet
hes, writes to and and evi
ts a
a
he-linefrom the DL1 between the time that
a
he-line is pushed into the FIFO bythe prefet
h
ontroller and the time it arrives at the head of the FIFO and istransferred to the DL1. The main program
ould now end up reading staledata. Handling
oheren
e requires me
hanisms and poli
ies for dete
tion andre
overy. There are two broad te
hniques to dete
t a
oheren
e
on
i
t be-86

Instru
tion Semanti
spull Transfer
a
he-lines from FIFO to DL1 as des
ribedin Se
tions 5.4 and 5.5.r
opy Rd Rp Copy the
ontents of pro
essor register Rp to TwoStepregister Rdstart p
 Copy immediate �eld p
 into TwoStep PC register.Table 5.3: ISA extensions for the main general-purpose pro
essor.tween
a
he and FIFO: �rst, s
an the FIFO for dupli
ates when pushing, andse
ond, to s
an the FIFO for dupli
ates when pulling. Similarly, re
overingfrom a
on
i
t presents two options: either
ush the FIFO, invalidating all its
ontents without
hanging FIFO size in order to preserve syn
hronization, orinvalidate
on
i
ting
a
helines. Both dete
tion and re
overy
an be speededup by using a hardware hash-table for �ltering
he
ks. Using su
h a hash-tableimplementation implies that sear
h is fast, and therefore invalidating just
on-
i
ting
a
helines is uniformly preferable to invalidating the entire
ontents ofthe FIFO. Later in this
hapter we examine the e�e
ts of
oheren
e
on
i
ts onthe bene�ts of TwoStep in an idealized manner, without
ommenting furtheron the low-level me
hanisms for
oheren
e dete
tion and re
overy.5.6 Initializing registers before kernel exe
utionWe
on
lude our des
ription of TwoStep with a des
ription of the pro
e-dure for initializing a prefet
h thread and a
tivating it. Table 5.3 summarizesthe extensions to a general-purpose pro
essor ISA required by TwoStep. De-sign de
isions behind the pull instru
tion has already been
overed in detail.87

In addition, the pro
essor requires two types of instru
tions to setup and ki
ko� prefet
h programs for di�erent program phases. The �rst is r
opy to
opypro
essor registers into their
ounterparts in the L2
ontroller, supplying theprefet
h kernel with all ne
essary inputs. After some number of r
opy instru
-tions, the main program then exe
utes a start instru
tion to set the PC registerof the L2
ontroller and
ommen
e prefet
h kernel exe
ution. Overheads inthese latter two instru
tions are easily tolerated; in our implementation, ea
hr
opy and start instru
tion takes up 10 instru
tion slots in the main pro
es-sor pipeline without impa
ting prefet
h thread performan
e. This overheadshould be a
onservative estimate of the most likely implementation for theseinstru
tions in a produ
tion setting | using memory-mapped I/O.5.7 Intera
tions between pulls and sto
k
ompilersOne issue arose in our implementation be
ause we
hoose to instrumentthe main program at the level of the sour
e
ode just like with DTra
k, ratherthan in the binary. As a result, pull instru
tions within loop nests
an perturbthe
ode a
onventional
ompiler generates. Sin
e pull instru
tions o

ur in theinner loops of the appli
ation, any su
h perturban
e is likely to
ause signi�
antdegradation in performan
e. Sin
e the Alpha
ompiler we use is not awareof their semanti
s, this en
oding has
hanged several times to work aroundidiosyn
ra
ies in optimization poli
ies. Prior versions of the pull instru
tion
aused the
ompiler to suppress loop unrolling and software pipelining for tightloops
ontaining pull instru
tions. Our
urrent version maintains pointers to88

Feature Size/Value#Registers 32Instru
tion store 2KBFIFO
apa
ity 2KBPull laten
y 4 for �rst
a
he-line1
y
le for subsequent
a
he-linesPrefet
h
ontroller TLB
apa
ity In�niteTable 5.4: Baseline TwoStep
on�guration. Pro
essor
on�guration in Ta-ble 3.1.ea
h of the memory-mapped addresses used for instrumentation, in order tokeep the
ompiler from hoisting these loop-invariant stores out of the loop theyare intended for. In a produ
tion setting the
ompiler's poli
ies will have tobe modi�ed to ignore pull instru
tions.5.8 Experimental MethodologyIn order to assess the feasibility of TwoStep, we evaluate it over 8 ofour appli
ations in the rest of this disseration. Ben
hmark
hoi
e was largelydriven by the
hara
terization detailed in Chapter 3: 300.twolf, sphinx, and181.m
f are irregular appli
ations with the most intensive traÆ
 to memory;183.equake is a regular memory-intensive appli
ation; 179.vpr and 188.ammpare irregular appli
ations with moderate memory traÆ
; �nally, 164.gzip and179.art are regular appli
ations with low memory traÆ
. This
hapter's initialexploration using hand-
rafted prefet
h kernels further fo
usses on just 4 ofthese appli
ations: 179.art, 181.m
f, 300.twolf, and sphinx. We run these ap-pli
ations on a version of sim-alpha [25℄ enhan
ed with an implementation of89

TwoStep prefet
hing. Hints are used to implement pulls as well as demar
atethe endpoints of ea
h simulation interval in terms of high-level loop iterations.We spe
ify high-level simulation start- and end-points for ea
h appli
ation inorder to make
onsistent measurements a
ross di�erent binaries with and with-out pull instru
tions. Both baseline and transformed
odebases are
ompiledwith the aggressive Alpha GEM

ompiler [75℄. Table 3.1 earlier summarizedthe baseline demand-fet
hed ma
hine
on�guration; Table 5.4 now enhan
esthis
on�guration with a baseline TwoStep
on�guration, spe
ifying the size ofthe instru
tion store, the default FIFO
apa
ity, Pull laten
y, and TLB
apa
-ity. Sensitivity results at various points in the next 3
hapters will motivatethese design
hoi
es.Sele
ting a baseline ma
hine
on�guration: Our baseline in
ludes noprefet
hing in the data
a
hes. This de
ision was made for two reasons:1. Neither the Alpha 21264 nor most past literature on prefet
hing in
ludedhardware prefet
hing in the baseline. By following pre
edent, we allow
onvenient
omparison with prior work.2. Not all prefet
h s
hemes
an be favorably
ombined with ea
h other.Subtleties in the design of di�erent prefet
h s
hemes a�e
t intera
tionsbetween them. By using a purely demand-fet
hed baseline, we avoidfavorable or unfavorable perturbations to our results. This approa
hallows us to safely explore intera
tions with other prefet
h s
hemes inChapter 7. 90

Comparing TwoStep with other prefet
h te
hniques: We now brie
youtline our methodology for
omparisons with other prefet
h te
hniques, bothusing hand kernels in the rest of this se
tion, and using the TwoStep
ompilerin Chapter 7. The TwoStep
ompiler is based on C-to-C translation usingthe C-Breeze
ompiler toolkit [30℄,
oupled with the same optimizing AlphaGEM

ompiler in the ba
kend. Our major
omparisons are with Taggedprefet
h [87℄ and a family of region prefet
hing te
hniques: S
heduled RegionPrefet
hing (SRP) [55℄ and Guided Region Prefet
hing (GRP) [99℄.Tagged prefet
h prefet
hes the next
a
he-line on an L2
a
he miss,and it marks
a
he-lines as prefet
hes using an extra tag bit to mark non-spe
ulative data. This bit is set for demand fet
hes on initial fet
h, and forprefet
hes on their �rst non-spe
ulative use. This approa
h allows limitedlookahead and
on
omitant improvement for simple spatial patterns, but failsto improve more irregular appli
ations.SRP
onsists of a s
heduler at the L2 that prefet
hes data from mem-ory in 4KB-aligned regions around addresses
ausing
a
he misses. The
owof prefet
hes is tuned to not slow down the pro
essing of demand fet
hes; de-mand fet
hes are prioritized over prefet
hes in the
a
he hierar
hy (old andunpro
essed prefet
hes are silently dropped), and prefet
hes are pla
ed in theLRU way of the L2 to redu
e
a
he pollution for appli
ations with irregu-lar a

ess patterns. GRP augments these region prefet
h me
hanisms with
ompiler-generated hints for pointer as well as region prefet
hing that serve toimprove a

ura
y and eliminate region prefet
hing in irregular appli
ations.91

The te
hniques we
ompare TwoStep with span the spe
trum from thestate of the art in produ
tion hardware to the state of the art in resear
hprototypes. Tagged prefet
h is a simple hardware me
hanism that exempli-�es me
hanisms in
luded in many produ
tion pro
essors. As su
h, it pro-vides a
ommon baseline of produ
tion ma
hines to
ompare against. Wesele
ted GRP and SRP as our examples of more re
ent resear
h for threereasons. First, we wanted the te
hniques we
ompare with to be relativelyre
ent, and reasonable exemplars of the state of the art, showing sophisti-
ated de
isions for prefet
h sele
tion, timing and pollution-avoidan
e. Se
-ond, we wanted a broad
overage of both hardware and software te
hniques,and of te
hniques addressing both spatial and pointer prefet
h. Third, wewere
onstrained by methodologi
al
onstraints of easily-a

essible infrastru
-ture. Choosing a family of te
hniques allows us to perform
omparisons a
rossjust two parallel
ompiler-simulator tool
hains | C-Breeze+TwoStep+sim-alpha and S
ale+Region prefet
h+sim-outorder [99℄ | thereby
utting downon our infrastru
ture-management overhead and also on the baselines we needto tra
k. While the ma
hine
on�gurations are largely the same, GRP andSRP use the sim-outorder mi
roar
hite
ture to run Alpha ISA binaries [9℄rather than the detailed model of the Alpha 21264 that we use [25℄. In addition,GRP is
ompiled for the Alpha ISA using the S
ale resear
h
ompiler [62℄.
92

Feature 181.m
f 300.twolf 179.art sphinxPrefet
h program size 52 37 29 100(1-byte instru
tions)Ca
he-lines pulled per inner loop 3-12 2-11 1 1-7iteration# Phases per topmost iteration 3 1 1 5# Distin
t loop nests 8 1 7 1Max nesting depth 2 3 2 3Table 5.5: Vital statisti
s of our hand-
rafted prefet
h programs5.9 Preliminary evaluation with hand-
rafted prefet
hkernelsThis se
tion summarizes some initial �ndings of our study, using hand-
rafted prefet
h kernels to evaluate TwoStep. We begin with hand-
raftedkernels for two reasons. First, they allow us to explore the potential of our ap-proa
h independent of
ompiler implementation. These results were generatedbefore the
ompletion of the
ompiler implementation as a feasibility study.Se
ond, our hand-
rafted kernels a
t as ben
hmarks for the later
ompiler im-plementation, and subsequent
hapters will show that we do well at ful�llingthe potential of TwoStep even though the
ompiler-generated kernels are verydi�erent.Our �ndings are in two
ategories. First, we evaluate TwoStep andshow signi�
ant speedups for the irregular appli
ations we sele
ted. Se
ond,we perform various sensitivity analyses in the design spa
e,
ompare TwoStepwith some prior prefet
hing studies, and analyze our improvements by datastru
ture to
on�rm our intuitions. Table 5.5 highlights the small size of our93

17
9.

ar
t

18
1.

m
cf

30
0.

tw
ol

f

sp
hi

nx

0

5

10

15

S
pe

ed
up

 (
%

)

Figure 5.3: Improvements with an in�nite FIFOhand-
rafted prefet
h programs and the small footprint of loop iterations, asmeasured by the number of
a
he-lines pulled in ea
h. Our detailed
hara
ter-ization of the previous
hapters now yields a small number of distilled prefet
hkernels that provide substantial prefet
h
overage in just 1-8 loop nests withless than 100 instru
tions in the TwoStep ISA, ea
h nest at most 3 loops deep.Measuring limit performan
e: We begin by measuring the performan
eof TwoStep relative to the baseline. For this experiment, we
on�gure TwoStepwith an in�nitely long FIFO so that the prefet
h engine never has to stall towait for the main program to
at
h up. Pulls have a laten
y of 4
y
les betweenrequest from FIFO and transfer to DL1. Figure 5.3 summarizes the redu
tionin total
y
le time after simulating well-de�ned intervals of our appli
ationwith TwoStep enabled. TwoStep shows speedups of between 10 and 15% forour 3 irregular appli
ations. The regular appli
ation 179.art has more minorspeedups, hinting at TwoStep's limitations. We examine more appli
ations inChapter 7 to determine the extent of this issue, and to investigate its
auses.94

17
9.

ar
t

18
1.

m
cf

30
0.

tw
ol

f

sp
hi

nx

0
20
40
60
80

100

D
R

A
M

 a
cc

es
se

s
(%

)

Figure 5.4: Fra
tion of main memory a

esses remainingFigure 5.4 demonstrates a se
ond strength of TwoStep: we show thatsu

essful prefet
hing may be a

ompanied by redu
tions in the number of a
-
esses to main memory. While most prefet
hing studies at best avoid in
reas-ing aggregate bandwidth requirements to main memory, the high a

ura
y ofTwoStep prefet
hes allows
a
he-lines to turn dead after their last prefet
hin an interval. This
ompression of live times in
reases temporal lo
ality, re-sulting in redu
tions in DRAM a

ess
ounts. These initial results establishthe promise of TwoStep: a

urate and well-timed prefet
hing into the
a
hehierar
hy for arbitrarily irregular a

ess patterns.Prefet
hing e�e
tiveness: We now analyze the results of Figure 5.3 more
losely in order to understand the sour
e of our speedups. In spite of theredu
tions in
y
le
ount, the number of DL1 misses is relatively una�e
tedby TwoStep. To gain a deeper understanding of the
riti
al path, we tra
k
y
les that the pipeline
ommits no instru
tions, assigning blame to the datastru
ture of the load at the head of the reorder bu�er. Figure 5.5 summarizes95

17
9.

ar
t

18
1.

m
cf

30
0.

tw
ol

f

sp
hi

nx

0
20
40
60
80

100
S

ta
ll

cy
cl

es
 (

%
)

DS1
DS2
DS3
Aggregate

Figure 5.5: Stall
y
les remaining after TwoStep prefet
hing for the mostfrequently missing data stru
tures (DS1 and DS2),
ompared to redu
tion inaggregate stall
y
les due to memorythe number of stall
y
les redu
ed for ea
h appli
ation on a data stru
turebasis. We show 4 bars for ea
h appli
ation in this �gure, for the top 3 datastru
tures by miss-
ount (the same data stru
tures as in Tables 3.3{3.5), andfor the appli
ation in aggregate. Ea
h bar shows the per
entage of stall
y
lesremaining after TwoStep prefet
hing is applied to the baseline ma
hine
on�g-uration. Figure 5.5 shows that pipeline stalls due to major data stru
tures DS1and DS2 are redu
ed. These are the data stru
tures targetted by our prefet
hprograms. The impa
t of these redu
tions on aggregate pipeline stalls dueto memory is, however, markedly lower. We believe that understanding thepre
ise reasons for this di�eren
e | the other data stru
tures that are now
riti
al | will be a fruitful avenue for future resear
h.
96

17
9.

ar
t

18
1.

m
cf

30
0.

tw
ol

f

sp
hi

nx

0

10

20

30
S

pe
ed

up
 (

%
)

TwoStep
GRP
GRP:ptr
GRP:region
SRP

Figure 5.6: Comparison of TwoStep with some prior prefet
hing studies.Comparison with prior studies: Having performed a detailed
omparisonof TwoStep with a no-prefet
h baseline, we now
ompare TwoStep with afamily of region prefet
hing te
hniques from prior work. As detailed in theprevious se
tion, our results for region prefet
hing were obtained on a paralleltool
hain to ours; we therefore
ompare their speedups relative to independentbaselines.Figure 5.6 summarizes the results of our initial
omparison. For ea
hof our initial appli
ations, we show the redu
tion in
y
le
ounts resultingfrom TwoStep and 4 region prefet
h setups: GRP, GRP with only pointer-prefet
h hints enabled, GRP with only region prefet
hing hints enabled, andSRP whi
h provides no hints. TwoStep does substantially better than allthese approa
hes for 300.twolf and sphinx, and as well as the best of themfor 181.m
f, but substantially worse for 179.art. Thus, both GRP and SRPhave poorer
overage than TwoStep among irregular appli
ations, but providesubstantially better performan
e for regular appli
ations. We return to these97

17
9.

ar
t

18
1.

m
cf

30
0.

tw
ol

f

sp
hi

nx

0

5

10

15
S

pe
ed

up
 (

%
)

8KB
16KB
32KB
64KB
inf

Figure 5.7: Sensitivity of speedups to FIFO
apa
itybipolar results for a more detailed study in Chapter 7.SRP's performan
e largely mat
hes that of GRP, but with lower prefet
ha

ura
y and more pro
igate use of main memory bandwidth. However, thebene�ts of spatial and pointer prefet
hing do not follow super�
ial trends.181.m
f and sphinx are almost purely pointer-based te
hniques, but are im-proved more by the region prefet
hing in GRP than the pointer prefet
hing.These phenomena arise from a

idental intera
tions with the memory allo
a-tor. In Chapter 7 we return to them and argue that su
h a

idental intera
tionsare easily lost due to experimental
hanges su
h as a larger input set.Sensitivity analysis: The TwoStep design has two major parameters -FIFO
apa
ity and pull laten
y - that must be realisti
 in order for it tobe feasible. We now evaluate its sensitivity to these parameters. Figure 5.7summarizes the speedups obtained by TwoStep for our appli
ations and the98

17
9.

ar
t

18
3.

m
cf

30
0.

tw
ol

f

sp
hi

nx

0

5

10

15
S

pe
ed

up
 (

%
)

None
Oracle
25%
50%
100%

Figure 5.8: The e�e
t of
oheren
e
on
i
ts on performan
e. Per
entagesindi
ate fra
tion of false positivessensitivity of these improvements to FIFO
apa
ity. A 2KB (32-entry) FIFOsuÆ
es to provide most of the bene�t of an in�nite-
apa
ity FIFO, indi
atingthe e�e
tiveness of the FIFO at realisti

apa
ities for
urrent te
hnologies [2℄.Coheren
e: We now evaluate the e�e
t of handling
oheren
e issues betweenthe
a
hes in FIFO in TwoStep. Corre
tness is not a�e
ted as our timing-basedsimulation model is independent of the model of fun
tional
omputation. We
onsider an ora
le implementation that de
ides whether to pull or dis
ard ea
h
a
he-line in the FIFO based on prior stores to that address. We then randomlyinsert false positives in the ora
le's de
isions in order to gauge the sensitivity ofour speedups to
on
i
ts in the FIFO due to
oheren
e. Figure 5.8 shows that
oheren
e with an ora
le degrades our speedups by less than 1%. Performan
edegradation is negligible upto 50% false positives (i.e. half the FIFO entriesare invalidated on ea
h store). These results show our s
heme to be robust99

17
9.

ar
t

18
1.

m
cf

30
0.

tw
ol

f

sp
hi

nx

0

5

10

15
S

pe
ed

up
 (

%
)

Normal
SyncOnly

Figure 5.9: The importan
e of pushing to DL1to
oheren
e
on
i
ts, primarily due to the relative infrequen
y of stores inour appli
ations. The
ase of 100% false positives we
onsider in more detailbelow.Prefet
hing to L2 vs DL1: Figure 5.9 attempts to tease apart the twinbene�ts of TwoStep - prefet
hing data to the L2 and making it available atthe DL1. It
ompares two
on�gurations:1. Normal: A
onventional TwoStep mi
roar
hite
ture.2. Syn
Only: A modi�
ation to TwoStep where pulls remove
a
he-linesfrom the FIFO but do not transfer them to DL1.In the latter
ase, the FIFO a
ts purely as a syn
hronization me
ha-nism,
ausing the prefet
h
ontroller to stall when it runs too far ahead of themain program. It is behaviorally very similar to the
ase of
oheren
e with100

100% false positives (always
ush FIFO on store), and our results for these two
on�gurations are identi
al. Figure 5.9 shows that the importan
e of pushingdata to the DL1 varies by appli
ation; 181.m
f and 300.twolf derive more than75% of their speedups from L2 prefet
h, while in sphinx and 179.art more than75% of the speedups is derived from prefet
hing to the Dl1. We explain theseresults in more detail in Chapter 7.5.10 SummaryIrregular appli
ations
ontain sophisti
ated a

ess patterns. TwoStepprefet
hes for su
h appli
ations by providing simple hardware me
hanisms - aprefet
h engine and a FIFO - that
an be
ontrolled by software. The hardwareme
hanisms have useful properties: fewer
onstraints on prefet
h s
heduling,resistan
e to DL1 pollution, and easy throttling. These improvements area
hieved at the
ost of some burden to software: the
ompiler must stati
allymap prefet
hes in the prefet
h program to pulls in the main program, andensure that the two stay syn
hronized. Initial experiments with hand-
raftedkernels show that it performs as expe
ted for irregular appli
ations, but notas well for relatively regular appli
ations. We now des
ribe the
ompiler-side
omponent of this thesis before generating results for more appli
ationsand identifying more rigorously the high-level
hara
teristi
s that in
uen
eappli
ation synergy with TwoStep.
101

Chapter 6Compiler support for TwoStep
This
hapter des
ribes and evaluates
ompiler algorithms to generateuseful pre
omputation kernels for TwoStep. Our
ompiler is stru
tured to
onvert from C to C, outsour
ing ba
k-end optimizations to an o�-the-shelfC
ompiler. It uses information from an interpro
edural pointer analysis, andperforms several
ontext-sensitive traversals of the whole program, starting atthe beginning of main() and pro
essing fun
tion bodies everytime a
all tothem is en
ountered.We begin by enumerating the requirements for su
h a
ompiler, thenuse these requirements to drive a staged tour of the
ompiler as a series ofre�nements from the top down (Figure 6.1). The major
hallenge in designingthe
ompiler is to manage overheads due to pull instru
tions in our major loops.A purely brute-for
e approa
h that tries all possible
ombinations of the majorloops is infeasible; instead we stage information from di�erent sour
es | looppro�les and sli
e densities | to perform feedba
k-based ba
ktra
king in thesear
h spa
e of loop nest
ombinations. Figure 6.1 re
e
ts this ba
k-tra
kingoriented ar
hite
ture, des
ribed it in detail in Se
tions 6.1{6.4.After the des
ription, we
ontrast our
ompiler to the major prior work102

Loop
Selection

Loop
Clustering Processing

Cluster

stitch pt
Select

C sources
Application

count profile
Loop iteration

Instrumented
Sources

Prefetch kernels

Kernel Generation
Code

Cluster
Compute

Invalid code: give upToo dense: prune
outer loop

prefetch pt
Select

Density
Check

Slice
Compute

Tight loop encountered:
retry with different prefetch point

c)

b)

a)

Figure 6.1: Overview of the TwoStep
ompiler as a series of re�nements.

103

 while (list) {

 ++counter;
 leaf(list);
 list = list−>next;
 }

 doSomething(counter);
}

 pull;
 jeqi list, 0, exit

 addp list, list, 0, 0

 jeqi list, list, loop
exit:

void leaf (A* a) {
 a−>val = X;
}

void setList (A* list) {
 int counter = 0;
 while (list) {
 ++counter;
 leaf(list);
 list = list−>next;
 }

 doSomething(counter);
}

A B C

 addp list, list, next, 0

 pull;

void leaf (A* a) {
 a−>val = X;
}

void setList (A* list) {
 int counter = 0;

loop:

Figure 6.2: A simple C program (A), pull instru
tions added to it (B), and the
orresponding prefet
h program (C). Arrows
onne
t prefet
hes in the prefet
hprogram with
orresponding pull instru
tions in the main program.in
ompiling for pre
omputation and enumerate the major areas where pre-
omputing for TwoStep presents a di�erent set of
ontraints than
ompilershave fa
ed in the past. Finally, we perform a
omprehensive o�ine validationof our
ompiler's poli
ies, exploring the entire state spa
e for our appli
ationsin sear
h of good sli
es that may have been missed. This analysis provides in-sight into one limitation of pre
omputation-based prefet
hing: when prefet
hbandwidth utilization is
riti
al in tight loops, it is ne
essary to trade o�prefet
h
overage for sli
e density. Sli
es that are too dense result in prefet
hkernels that do mu
h of the same work as the main pro
essor, redu
ing theprefet
h thread's ability to run ahead of the main program and therefore itse�e
tiveness.
104

6.1 Goals and requirementsFigure 6.1 illustrates the transformations TwoStep requires. Given ap-pli
ation C sour
es it must emit useful prefet
h kernels in the TwoStep ISAat the L2
ontroller, and appropriately instrument the main program binaryrunning at the pro
essor. These twin modi�
ations require me
hanisms andpoli
ies for the following:1. Sele
ting loads most likely to
ause pipeline stalls. We
all these stati
program lo
ations prefet
h points.2. Sele
ting for ea
h prefet
h point a stit
h point | a lo
ation where pre-
omputation may pro�tably be started, early enough to give TwoStepthe sla
k ne
essary to run ahead, but not so early as to
ause the prefet
hprogram to grow too bloated, or to be often led astray before the prefet
hpoint is rea
hed.3. Generating the prefet
h program
orresponding to all the
omputationne
essary to
ompute the prefet
h point from the stit
h point.4. Inserting pulls at the start of ea
h loop involved.For an illustration of these transformations, see Figure 6.2. This �gure shows asimple program to operate on a linked list, the pla
es where the
ompiler needsto insert pulls, and the
orresponding prefet
h program to run on TwoStep.We use this example at various points in the rest of this
hapter. The
ru
ial105

requirements for the
ompiler are to generate prefet
h programs shorter thanthe
orresponding parts of the main program so that it runs ahead, and forthe instrumentation in the main program to be lightweight. Also, every pullexe
uted by the main program must do useful work to justify its overhead; the
ompiler must avoid inserting pulls at lo
ations where the prefet
h program isunlikely to have data in the FIFO. In the next three se
tions, we des
ribe thepro
ess by whi
h the TwoStep
ompiler meets these requirements.6.2 Analyzing the appli
ation by loop
lusterGiven the above requirements, the
ompiler's
ow
an be de
omposedat the highest level into 3 pie
es as shown in Figure 6.1 a): Loop sele
tionto identify what must be prefet
hed, loop
lustering to maximize sla
k forthe prefet
h kernel, and
luster pro
essing to generate at most one prefet
hkernel per loop
luster. Our �rst step, loop sele
tion, uses one pie
e of easily-obtainable pro�le information | loop
ounts. To stati
ally
ompute the deref-eren
e volume: DVloop = Itersloop � Stati
P trsloop (6.1)where Iters is the average number of iterations of this loop per loop entry, andStati
P trs is the path-insensitive
ount of deref operations in this loop bodyex
luding loops nested within it. We then sort the list of loops by DV , shortlistthe top loops that add up to 90% of total appli
ation DV , and
ommen
e these
ond step | loop
lustering. 106

C

B

A

D

E

F

G

H

I

JFigure 6.3: Appli
ation viewed as a tree of
ontext-sensitive loops. Shadednodes are shortlisted loops. Three
lusters are shown. Leaf C does not belongto a
luster be
ause it has no an
estor in the shortlist.Loop
lustering: Figure 6.3 depi
ts the
ompiler's view of an appli
ationduring loop
lustering. The appli
ation is a tree of loops. The root node rep-resents the entire appli
ation | the body of the main() routine, and all othernodes represent
ontext-sensitive loops. The
hildren of ea
h node are loops
ontained within its body. Shortlisted loops are shaded. Fun
tion boundarieshave been elided. The
ompiler builds up loop
lusters starting at ea
h leafloop | a loop with no subordinate loops | by s
anning outward adding
on-tainer loops to the
luster, o

asionally
reating a boundary and starting afresh
luster. Our
lusters maintain the following invariants:� Ea
h
luster
ontains innermost exa
tly one shortlisted loop. If we en-107

ounter a se
ond we start a new
luster. Leaves without an en
losingshortlisted loop at any level are dis
arded, sin
e they provide insuÆ
ientin
entive for prefet
hing.� Ea
h
luster
ontains as many loops as possible both above the short-listed loop. Later phases may subset a
luster; we give them as mu
h towork with as possible.� We never allow a
luster to grow past a fun
tion boundary if it is
alledin multiple
ontexts in the loop tree and not all of these
ontexts liewithin a
luster. More pre
isely, we permit a loop A to be added to the
luster of a subordinate loop B in a di�erent fun
tion f only if 99% ofiterations of loop B (from the loop pro�le) have an an
estor in a
luster.This
ondition prevents us from adding the overhead of pulls in
ontextswhere there will not be a prefet
h kernel running any signi�
ant fra
-tion of the time. Enfor
ing this
ondition requires a se
ond pass after
lustering to prune bad
lusters.The rest of the
ompiler pro
esses these
lusters in des
ending order of theirDV . DV
luster =XDVloop (6.2)This ensures we prioritize our
luster
andidates by expe
ted
a
hemiss
ount. The list of
lusters
an have overlap and usually does; after a108

luster is su

essfully pro
essed no member or an
estor loop
an be pro
essedagain. This
onstraint prunes some
lusters and eliminates others entirelyfrom
onsideration.6.3 From loop
luster to prefet
h kernelAs depi
ted in Figure 6.1 b, pro
essing a
luster
onsists of a

epting a
luster of loops as input and emitting at most one prefet
h kernel
orrespond-ing to it. It
onsists of three major phases | stit
h point sele
tion, kernel
omputation, and
ode generation | and one feedba
k path to prune su

es-sive outer loops from a
luster if the resultant prefet
h kernel is found to betoo dense relative to the main program. We now fo
us on the �rst and third,postponing the des
ription of the kernel
omputation to the next se
tion.Stit
h-point sele
tion: Given a
luster of loops, the stit
h point is thepoint in the program to insert stit
h
ode to trigger the
orresponding prefet
hkernel. Sin
e stit
h
ode must trigger pre
isely on
e for every exe
ution of theloop
luster, a good stit
h point has the following properties:� As a boundary-
ondition initialization, it o

urs outside the loop
lusteritself.� It dominates the
luster; every exe
ution of the
luster should have exe-
uted stit
h-point
ode.
109

� It does not lie outside the loop
ontaining the
luster. Stit
h
ode mustexe
ute every time the
luster is entered.� It does not lie before a sibling loop in the loop tree. This preventstoo-early initialization as well as destru
tive overlap between prefet
hkernels.� It does not lie before a sibling fun
tion
all. Again, this prevents arbi-trary gaps between initialization and prefet
h use. However, this
on-straint does not ex
lude the possibility of the stit
h point and
lusterbeing in di�erent fun
tions; the stit
h point may lie further up the
allsta
k subje
t to previous
onstraints. If we span a fun
tion boundary,however, we must
ompute a good stit
h point in every possible
ontextof the fun
tion.� It o

urs as far before the
luster as possible subje
t to the previous
onstraints.Figure 6.4 shows our algorithm for sele
ting good stit
h points, taking these
onstraints into a

ount. The individual
onditions have a one-to-one
orre-sponden
e with the above properties. We add two points to
larify the re
ur-sive
ase when moving the stit
h point up the
all sta
k. First, we
an
learanswerSta
k be
ause we are guaranteed to �nd at least one more dominatingstatement where the stit
h
ode may be inserted | right before the last
all.Se
ond, the re
ursive
all
annot be passed
luster itself; it must instead be110

// l is the
ontext-sensitive statement list of the input programsele
tStit
hPoint(stmt,
luster, answerSta
k):traversing s upwards from stmt in l:if s dominates
luster: answerSta
k.push(s)if fun
tion
all is en
ountered: breakif loop boundary is en
ountered: breakif fun
tion header is en
ounteredand there is more than one
aller:
lear answerSta
kfor every
alling
ontext
:
luster' =
orrespondingContext(
luster,
)stit
h' = sele
tStit
hPoint(
,
luster', [℄)answerSta
k.push(stit
h')endreturn answerSta
kendendreturn answerSta
k.topend// Usage: sele
tStit
hPoint(
luster, firstStmt(
luster), [℄)Figure 6.4: Stit
h point sele
tion starting at a spe
i�
 statement. Takes a loop
luster as input and returns a list/sta
k of
ontext-independent statementsafter whi
h stit
h
ode should be instrumented.
111

a
ontext-sensitive statement
orresponding to the stati

luster but in thesame
ontext as the
aller
.Code generation: On
e a stit
h point is sele
ted and its prefet
h kernel
omputed and found to be not too dense, it remains only to emit the prefet
hkernel in terms of the TwoStep ISA. A simple one-pass
ode generator suÆ
esfor this purpose, with simple rules for translating ea
h statement type in alowered C form |
ontaining only ifs and gotos and no more than one binaryoperation and one assignment per statement as shown in Figure 6.5 | intosome sequen
e of TwoStep instru
tions. Our prototype
ompiler performs noregister allo
ation, assuming an in�nite pool of registers. It also performs noba
k-end optimizations. Later in this
hapter, we show that these de
isions donot impa
t our evaluation. The only other
ompli
ation is the book-keepingne
essary to skip past empty basi
 blo
ks without perturbing the global
ontrolstru
ture of the prefet
h kernel.There are a few rare
ir
umstan
es where the
ompiler is
urrentlyunable to generate
ode for a prefet
h kernel: if the kernel
ontains a
all toa library routine whose body is not available to our whole-program analysis,or if it
ontains a re
ursive fun
tion
all. In these
ir
umstan
es we
urrentlydis
ard the kernel. Otherwise, we insert the stit
h
ode
omputed duringsli
ing (des
ribed below) and insert pulls at the start of ea
h loop in the
luster.
112

void setList(A * list) {int
ounter, __T0, __T1, __T2;{
ounter = 0;goto __L0;}{__L0:; if (list == 0) goto __L1;goto __L3;}{__L3:; __T0 =
ounter + 1;
ounter = __T0;__T1 = leaf(list);list = (*list).next;goto __L0;}{__L1:; __T2 = doSomething(
ounter);}} Figure 6.5: Linked list traversal in lowered C form.
113

6.4 Sele
ting a good sli
e for a �xed
lusterWe now turn to Figure 6.1
), the �nal
omponent of the TwoStep
ompiler. On
e again, we divide up the pro
ess of generating kernels from aloop
luster and �xed stit
h point into three phases | prefet
h point sele
tion,sli
e
onstru
tion, and a density
he
k. Sli
es that are found to be too denseare retried after stripping an outer loop from the
luster as des
ribed in theprevious se
tion. One �nal heuristi
 is to dis
ard sli
es that
ontain a loopwith a single basi
 blo
k, be
ause all su
h tight loops serve to do is to allowthe main program to
at
h up with the prefet
h program, without a
tuallyproviding any prefet
hing bene�t. We perform this test after sli
ing be
ausein pra
ti
e su
h really tight loops are often not part of the sli
e even if theyare within the loop
luster of interest. When we en
ounter them in a sli
e weba
ktra
k to pi
k a di�erent prefet
h point and re
ompute the sli
e.Prefet
h point sele
tion: The prefet
h point of a
luster is a pointer deref-eren
e to be prefet
hed within the innermost loop of the
luster. We simplypi
k the �rst su
h statement we �nd,
he
king that it
annot be hoisted outof the innermost loop, and avoiding the innermost-loop indu
tive variable ifpossible. We rely upon later
he
ks for sli
e density to ba
ktra
k and try adi�erent prefet
h point if ne
essary.Sli
e
omputation: Given a prefet
h point and a stit
h point we
an now
ompute the ba
kward sli
e starting at the prefet
h point. Figure 6.6 illus-114

trates the ne
essary inter-pro
edural transformation. The sli
ing algorithm
onsists of starting at the prefet
h point and traversing ba
k the interpro
edu-ral rea
hing-de�nitions as
omputed by the pointer analyzer. We mark everystatement en
ountered in this tree traversal,
utting traversal short when weattempt to move to a statement before the stit
h point in the
ontext-sensitivestatement list of the program (statement l in Figure 6.4).On
e the set of statements in the sli
e is
omputed, we
an identify theset of values that need to be transferred to the TwoStep prefet
h
ontrollerat the stit
h point. We perform a ba
kward interpro
edural traversal, addingvalues on the right-hand side of statements in the sli
e as we en
ounter them,and removing values on the left-hand side. When a pro
edure
all is en
oun-tered, we rename formal parameters with
all arguments and pro
eed. Thistraversal
ontains a parsimonious list of the variables that need to be seededinto TwoStep's registers from those of the main pro
essor before starting theprefet
h kernel for the
urrent sli
e.Density
he
k: Having
omputed the sli
e, we must now
he
k that itprunes enough
omputation to allow the prefet
h thread to run ahead of themain program. Our density metri
 is the fra
tion of the statement volumebetween prefet
h point and stit
h point that is part of the sli
e.SVloop = Itersloop � Sli
edStati
Stmtsloop (6.3)SV
luster =XSVloop (6.4)115

void leaf (A* a) {a->val = X ;}void setList (A* list) {int
ounter = 0 ;while (list) {++
ounter ;leaf (list) ;list = list->next ;}doSomething (
ounter) ;}
loop:if (!list) goto exit ;list->val = X ;list = list->next ;goto loop ;exit:

Figure 6.6: A simple C program and its
ontext-sensitive interpro
edural ba
k-ward sli
e TVloop = Itersloop � Stati
Stmtsloop (6.5)TV
luster =XTVloop (6.6)Density
luster = SV
luster=TV
luster (6.7)In these equations, Sli
edStati
Stmtsloop is the number of simple state-ments in 3-address form in one iteration of the loop that belong to the sli
e,and Stati
Stmtsloop is the total number of su
h statements in this iteration.Sli
es with densities under a �xed threshold of 60% are retried with otherprefet
h or stit
h points as outlined above. Our empiri
al reasons for sele
tingthis threshold are des
ribed in Se
tion 6.5.
116

Summary: We have des
ribed the implementation of the TwoStep
ompilerin detail. TwoStep transforms an appli
ation augmented with loop iteration
ount pro�les into prefet
h kernels in the TwoStep ISA for the important loop
lusters. Parts of this work
ow are
ommon with other sli
ing and pre
om-putation studies, while parts are ne
essitated by the novel TwoStep mi
roar-
hite
ture. In the rest of this
hapter, we des
ribe a preliminary evaluation ofour
ompiler
omparing sli
es generated automati
ally with those generatedby hand. We then dis
uss in greater depth the e�e
t of a pull-based prefet
h-ing mi
roar
hite
ture on the
ompiler and how it di�ers from prior algorithmsfor automati
 pre
omputation.6.5 Evaluating the sli
es generated by the
ompilerThis se
tion evaluates ea
h of the major poli
ies in our
ompiler, andwe demonstrate that these poli
ies adequately
over the state spa
e for ourappli
ations. We
over in order: loop
lustering, densities for di�erent
luster
on�gurations (the ba
ktra
king loop in Figure 6.1 b), and �nally the e�e
t ofprefet
h point sele
tion on density (loop of Figure 6.1
). We then summarizethe vital statisti
s of the prefet
h kernels sele
ted for ea
h of our appli
ations.Loop
lustering: Clustering bounds the state spa
e for sear
hing for usefulprefet
h kernels in later passes. Table 6.1 summarizes the usual size of thisstate spa
e, measured as the distribution of loops of di�erent nesting-depths inour appli
ations. These loop nests all
ontain innermost loops in the top 90%117

#Loops ofnest depth:Appli
ation 1 2 3 4175.vpr 8 14 0 0179.art 0 6 2 1181.m
f 0 1 1 1183.equake 0 0 3 0188.ammp 3 4 5 1256.bzip2 4 3 2 3300.twolf 7 8 0 0sphinx 3 6 0 0Table 6.1: Size of the
lustering state spa
eof loop volume for the appli
ation. Loop nest
andidates within an appli
ationoften have overlapping outer loops; the total loop volume for these nests oftenex
eeds 100%.Choosing loop
lusters: Sin
e a prefet
h kernel for one loop eliminatesoverlapping kernels in any
ontaining loops, the goal is to maximize the loopvolume that is
overed by kernels without drawing too mu
h
omputationinto the kernel. The density threshold is a
ru
ial parameter in the designof the TwoStep
ompiler, and a�e
ts the ability of the
ompiler to handledeeply-nested loops. In pi
king a good density threshold, we are guided bythe densities of the most deeply nested loops in our appli
ations, some of whi
hare shown in Table 6.2. In this �gure, we assume prefet
h point sele
tion asdes
ribed in Se
tion 6.4 and study the e�e
t of loop nest depth on densityand on per-prefet
h sli
e
y
le-time redu
tion. For ea
h loop
luster, we su
-118

Innermost Nesting # stmts Sli
e density Cy
le-timeloop fun
tion redu
tion179.arttrain mat
h 4 290 86% -2.5%3 288 44% 0.1%2 224 4% 0.0%1 120 3% 0.0%train mat
h 2 224 5% 0.5%1 120 3% 0.0%181.m
frefresh potential 2 27 48% 7.9%1 22 18% 4.7%primal bea mpp 3 487 71% 0.5%2 137 42% 4.2%1 88 21% 4.0%183.equakesmvp 3 358 10% 3%2 156 4.5% 0.8%1 155 2.5% 0.8%188.ammpmm fv update nonbon 4 993 26% 0.5%3 681 26% 0.2%2 121 9% 0.2%1 28 30% 0.0%eval 3 27234 53% -16%2 27178 0% 0.0%1 27152 0% 0.0%Table 6.2: Sli
e densities for the di�erent
on�gurations of the most interesting
lusters
119

while (1) {a = PICK_INT(1 , num
ells);a
ellptr =
array[a℄; (1)atileptr = a
ellptr->tileptr ; (2)atermptr = atileptr->termsptr ; (3)for(t=atermptr; t; t=t->nextterm) { (4)ttermptr = t->termptr ; (5)...}...}Figure 6.7: Loops with lots of dependent instru
tions have a small number ofpossible densities (300.twolf).
essively strip the outermost loop, showing the density of the resulting sli
eand the speedup resulting from applying just this sli
e. Using this data, weex
lude
lusters that generate sli
es with a density greater than 60%. The60% threshold is aggressive and permissive; it avoids ever dropping a favor-able
on�guration. While it does retain some dubious
lusters with extremelylarge sli
es that might simply add overhead at runtime, in pra
ti
e we �nd thatthese
andidates are eliminated by the
ompiler anyway be
ause they make alibrary
all the
ompiler
annot generate
ode for.Prefet
h-point sele
tion: Having
hara
terized the loop nest sizes andthe spa
e of
lustering de
isions, we now turn to the e�e
t of prefet
h-pointsele
tion on sele
ted
lusters. The majority of loop
lusters have 1-4 prefet
hpoint
andidates with widely varying densities, and de
iding about them iseasy. We �nd that the loops with hundreds of prefet
h point
andidates break120

Cluster Nesting DV Prefet
h points Common densities175.vpr I 2 31.2% 18 7.72%175.vpr II 2 20.1% 47 10%, 23%, 34%175.vpr II 1 3.2% 136 2.7%, 13.9%179.art I 4 32.1% 7 100%179.art II 2 19.7% 9 5%, 18.2%179.art III 1 2.0% 19 9.5%, 23.8%181.m
f I 2 51.3% 54 75.1%181.m
f II 1 51.3% 52 72.3%181.m
f III 1 16.4% 12 25%, 16.7%, 8.33%183.equake I 3 67.7% 200 1.18%, 2.11%, 9.8%, 82.7%183.equake II 2 62.7% 200 4.8%, 5.6%, 48.8%188.ammp I 2 51.2% 32 0.2%, 0.1%188.ammp II 1 45.6% 3 61.5%188.ammp III 1 11.4% 3 1.25%256.bzip2 I 1 31.9% 17 34.4%, 43.8%300.twolf I 2 26.6% 7 8.3%, 9.2%, 32.4%, 93.5%300.twolf II 2 16.8% 20 0.8%, 2.8%, 6.9%, 40.3%300.twolf III 1 4.1% 30 0.6%, 2.9%sphinx I 3 83.5% 472 83.5%, 48.3%sphinx II 1 35.2% 10 5.8%, 76.1%sphinx III 1 5.1% 6 35.7%Table 6.3: Size of the prefet
h-point sele
tion state-spa
e, with
ommon densi-ties for di�erent prefet
h-points. DV stands for dereferen
e volume as de�nedin Se
tion 6.2
121

down into a small number of nested equivalen
e
lasses be
ause of the presen
eof low-ILP dependen
e
hains. The presen
e of a loop-
arried dependen
eensures that in
luding one of the dereferen
es in an equivalen
e
lass resultsin all the others being in
luded. Figure 6.7 illustrates this pattern. Sele
tingany of the dereferen
es in statements 1{3 as the prefet
h point will in
ludeall 3 statements in the ba
kward sli
e. Density will thus remain the same.Sele
ting 4 or 5 would add both. Thus, there are only two legal densities inthis loop nest, assuming no dereferen
es (ie. only
omputation) in the elidedportions.Table 6.3 enumerates some of the major loop
lusters that test prefet
h-point sele
tion and the number of available prefet
h point
andidates | state-ments in the innermost loop of the
luster that
ontain pointer dereferen
es |for ea
h. It also shows the most
ommon densities for these loop
lusters. Inall but one of our appli
ations, the largest possible density bounds the
riti
alpath to the last load as opposed to the
omputation performed using the loadsin a loop
luster. On
e again, our simple density threshold su

essfully pi
ksa good prefet
h point for all sli
es, while relying on overly large sli
es to bepruned during
ode-generation.The notable ex
eption to this pattern is 183.equake, where the presen
eof independent loads is
ommon,
ausing multiple parallel dependen
e
hainsin a loop be
ause of its multi-dimensional array data stru
tures. Figure 6.8illustrates this. Modifying the
ompiler to sli
e for multiple prefet
h pointsper
luster allows us to explore the spa
e of all possible
ombinations, but122

for (i = 0; i < nodes; i++) {next = Aindex[i℄;sum0 = A[next℄[0℄[0℄*v[i℄[0℄ + A[next℄[0℄[1℄*v[i℄[1℄+ A[next℄[0℄[2℄*v[i℄[2℄;sum1 = A[next℄[1℄[0℄*v[i℄[0℄ + A[next℄[1℄[1℄*v[i℄[1℄+ A[next℄[1℄[2℄*v[i℄[2℄;sum2 = A[next℄[2℄[0℄*v[i℄[0℄ + A[next℄[2℄[1℄*v[i℄[1℄+ A[next℄[2℄[2℄*v[i℄[2℄;...}Figure 6.8: 183.equake
onsists mostly of loops with multiple dependen
e
hains.on
e again we are either left with good density sli
es that fail to prefet
h allimportant loads, or high density sli
es that are unable to run suÆ
iently farahead of the prefet
h thread. We prune the latter
andidates from further
onsideration. A prefet
h engine that
an prefet
h for multiple iterations inparallel | and so utilize all available prefet
h bandwidth for independentiterations | may be able to
onsider su
h sli
es more aggressively.Compiler ba
k-end and prefet
h kernel
hara
teristi
s: Clusters andsli
es that �t the
riteria of previous phases are now ready for
ode generation.Table 6.4 summarizes some
hara
teristi
s of the resultant prefet
h kernels inthe TwoStep ISA for our appli
ations | the number of individual kernels forea
h appli
ation, their total stati
 size in instru
tions, and the number of regis-ters utilized. We also present
orresponding data from the manually-generatedprefet
h kernels of the previous
hapter. As
an be seen, the automati
allygenerated kernels are less parsimonious than the hand-
rafted versions along123

Appli
ation Kernels Stati
 size # RegistersC H C H C R H175.vpr 5 - 100 - 77 12 -179.art 2 1 40 29 26 14 9181.m
f 3 3 221 50 139 32 14183.equake 1 - 29 - 30 12 -188.ammp 4 - 514 - 355 48 -256.bzip2 2 - 120 - 87 12 -300.twolf 9 1 305 33 271 31 20sphinx 9 2 935 99 671 31 16Table 6.4: Vital statisti
s for the sli
es generated by our
ompiler (C), and
omparisons with the hand-
rafted sli
es from Chapter 5 (H).ea
h of these dimensions:� The number of kernels goes up partly be
ause the
ompiler is not smartenough to merge sibling
lusters, and in a few
ases be
ause it generateskernels not
overed in the hand-
rafted
ase.� The sizes of the prefet
h kernels goes up be
ause the
ompiler performsno peephole optimizations, resulting in redundant COPY and JUMPoperations. We perform JUMP
haining to eliminate empty basi
 blo
ksin the prefet
h program. However, we do not eliminate JUMPs to thenext PC. We found that these peephole optimizations had no e�e
t onprefet
hing e�e
tiveness or
y
le
ount; the bottlene
k in exe
uting oursli
es is memory and pull laten
y rather than the number of instru
tionsexe
uted in the L2.� The TwoStep
ompiler
urrently performs no register allo
ation, always124

reating a new name rather than re
y
ling free ones. The
olumn Rin Table 6.4 shows the true register requirements for our appli
ationsafter straighforward manual register allo
ation. With the ex
eption ofone sli
e in 188.ammp, all our appli
ations require 32 registers or fewer,even though the
ompiler remains oblivious to any register-
apa
ity
on-straints at this time. In produ
tion it will need to be enhan
ed to o

a-sionally spill.Stit
h
ode in the main program: On
e the prefet
h kernels are gener-ated, the
ompiler must augment the main program for two reasons: insertingstit
h
ode to trigger di�erent prefet
h kernels at stit
h points, and insertingpulls at the start of loop iterations being prefet
hed for. Compared to manualkernels the overhead due to stit
h instrumentation in
reases for two reasons:the in
reased fragmentation into prefet
h kernels we alluded to above in
reases,and a
onservative algorithm in the
ompiler that o

asionally stit
hes vari-ables that are never used by the prefet
h program. These redundant variablesalso
ause some in
rease in the register footprint of our prefet
h kernels. Theyarise be
ause our implementation maintains pointer-aware rea
hing de�nitionsby statement rather than symboli
 lo
ation in order to
onserve
ompile-timespa
e.
125

6.6 Dis
ussion: TwoStep vs prior pre
omputation
om-pilersAs detailed in Chapter 2, pre
omputation-based prefet
hing has beenstudied in several instan
es of prior work [54, 76, 77℄. Most su
h studies haveeither
omputed sli
es in hardware or pursued post-
ompilation binary trans-lation. Computing sli
es in hardware restri
ts the s
ope of individual sli
es,while binary translation dete
ts only simple pointer-
hasing patterns. Boththese approa
hes are less e�e
tive at addressing the more
omplex interleav-ings of spatial and pointer a

ess that we demonstrated in Chapter 3. Thestate of the art in thorough
ompiler-based pre
omputation is the work of Kimand Yeung [47℄. We fo
us on this study in our
omparison.Kim and Yeung's
ompiler uses 2 kinds of pro�le information | loopiteration
ount pro�les and
a
he miss pro�les | to sele
t
ompute pre
ompu-tation sli
es for exe
ution in spare hardware
ontexts of a simultaneous multi-threading (SMT) pro
essor. The
ompiler
onsists of three major phases: sli
egeneration, prefet
h
onversion, and threading s
heme sele
tion. Sli
e genera-tion
onsists of sele
ting stores to start the sli
e at using the
a
he miss pro�le,
omputing a sli
e ba
k 2 loop nests. On
e the sli
e is
omputed, prefet
h
on-version
onsists of removing stores and repla
ing loads with non-blo
king vari-ants. Finally, threading s
heme sele
tion
onsiders two alternatives to simpleserial preexe
ution | doall whi
h spe
ulatively updates the indu
tive variablefor ea
h iteration and runs later iterations spe
ulatively in additional SMTthreads; and doa
ross whi
h performs a more detailed analysis of loop-
arried126

dependen
es to de
ompose loop iterations into a `ba
kbone' and `ribs', so thatribs may be exe
uted in parallel.This s
heme | whi
h we refer to as the SMT
ompiler | has mu
hin
ommon with our TwoStep
ompiler: a dependen
e on loop iteration
ountpro�les, pointer analysis and sli
ing; the
ru
ial de
ision of what to prefet
h orwhat load to start ba
kward sli
es at; sandboxing prefet
h threads from mak-ing ar
hite
turally-visible
hanges. There are also several points of di�eren
ein approa
h:1. The SMT and TwoStep
ompilers live in very di�erent
ontexts in termsof hardware budget. The SMT
ompiler assumes a full pro
essor ISAfor prefet
h threads with potentially multiple threads in
ight. TwoStep
onsists of a simple
ontroller that is little more than a state ma
hine,leaving pro
essor resour
es for other uses, and also simplifying our
odegeneration.2. Using a prefet
h
ontroller at the L2 is also more parsimonious than pro-
essor threads in terms of
a
he bandwidth. Sin
e our prefet
h
ontrollersits at the L2 we only pay half the round-trip laten
y and bandwidthfor ea
h memory a

ess. The redu
ed laten
y is espe
ially important forsequential pointer-
hasing.3. The SMT
ompiler uses a simpler stit
h-point sele
tion
riteria than wedo | to simply stop two loop nests above the prefet
h point. We explore127

more aggressive possibilities and use the post-sli
ing density metri
 de-s
ribed above to ba
ktra
k and prune outer loops. Our more aggressiveiterative solution shows 9% speedup for twolf as
ompared to the 2%they show, a di�eren
e whi
h is signi�
ant given the extra hardware andmultiple parallel prefet
h threads of the SMT
ompiler.4. Our pull instru
tions have about the same overhead as the semaphores intheir implementation; however pulls are superior in two ways. First, thesemaphores of the SMT
ompiler �x the appli
ation to a �xed numberof iterations, where a FIFO-based approa
h measures the amount ofpotential pollution more pre
isely allowing us to be more aggressive insome
ases. Se
ond, using a FIFO de
ouples prefet
h distan
e frompollution. Tighter loops
an thus bene�t from a larger FIFO and prefet
hdistan
e without risking pollution in the DL1.5. The SMT
ompiler relies on
a
he-miss pro�les generated using
a
hesimulation. We use simple stati
 models instead and rely for
orre
tionon ba
ktra
king in later phases. As a result, we are able to generatepro�les using native rather than simulated exe
ution. The time takenfor
a
he simulation is proportional to the size of the dynami
 exe
utionof interest; the extra time taken by ba
ktra
king depends on appli
ation
omplexity. For appli
ations in the SPEC suite, the two are
omparable.6. Having multiple prefet
h threads in
ight addresses a
on
ern for TwoStep| sequential prefet
h threads fail to use all available prefet
h bandwidth.128

This
an be
ome important in tight loops. As we show in Chapter 7,
ombining a pre
omputation-based s
heme with a history-based s
hemere
overs a lot of the bene�t in a simpler and more modular manner.These di�eren
es are largely a result of the di�erent hardware
ontexts of ourrespe
tive studies. Given multiple parallel
ontexts, Kim and Yeung fo
us onways to maximize their use, while TwoStep's design was driven by the desire tominimize the laten
y of pointer
hasing. This laten
y is
ru
ial in the patternsof serialized prefet
hing
ombining
omplex sequen
es of pointer-
hasing andspatial o�sets in some appli
ations that we observed using DTra
k. We nowevaluate sli
es of the TwoStep
ompiler using several stati
 metri
s, deferringthe more
omprehensive evaluation of the tool
hain to the next
hapter.6.7 SummaryThis
on
ludes our des
ription of the TwoStep
ompiler. Our detailedsurveys of the state spa
e that the
ompiler must sear
h serve to validate itsdensity-based poli
ies. We have shown that the state spa
e, suitable de
om-posed, is not overly large and that a relatively simple
ompiler organizationserves to �nd all opportunities in the form of favorable prefet
h sli
es. The de-tailed analysis also un
overs the limitation of pre
omputation-based prefet
h-ing responsible for 179.art's la
k of speedup: that
ertain kinds of loops withlots of dereferen
es per iteration organized in multiple dependen
e
hains needa favorable
ompute-store ratio to be e�e
tively prefet
hed. The `tighter' the129

loop in terms of
omputation, the harder it is to e�e
tively prefet
h all of thedi�erent loads in the loop. Aside from this limitation, however, our
ompilersu

essfully handles a wide variety of appli
ations and su

essfully
onvergeson the right
lustering and sli
ing de
isions to
ompare very favorably withmanually-generated kernels. While our manual versions have fewer stati
 ker-nels, often
ombining multiple kernels where the
ompiler
annot, and unifyingloops with identi
al a

ess patterns, the
ompiler is able to obtain nearly allthe speedup obtained manually.The
ompiler performs whole-program analysis based on detailed pointerinformation. The more heavyweight analysis requires multiple
ontext-sensitivetraversals of an appli
ation's sour
e
ode, one for ea
h
andidate sli
e pro
essedduring density measurement and
ode-generation. Compiling our largest
ode-bases | sphinx |
urrently takes over 2 hours. Re
ent advan
es in adaptiveon-demand
ontext-sensitivity [95℄
ould be used to optimize these traversals.In the rest of this dissertation, we fo
us on evaluating the resulting kernels,and on identifying the strengths and weaknesses of TwoStep.

130

Chapter 7Evaluating TwoStep
Having des
ribed the TwoStep mi
roar
hite
ture and
ompiler we nowperform a detailed evaluation and
hara
terization of TwoStep for our ap-pli
ations. Our results are broadly divided into two
ategories:
omparisonstudies to measure the bene�t of TwoStep relative to di�erent approa
hes, andstate-spa
e explorations to better understand the strengths and weaknesses ofTwoStep. In these results, we prune from
onsideration 4 appli
ations with lowmemory usage that TwoStep fails to improve: 165.gzip, 177.mesa, 186.
rafty,and 176.g

. We were unable to
ompile 176.g

 and 197.parser be
ause theTwoStep
ompiler runs out of memory.We begin by measuring the
overage and a

ura
y of TwoStep prefet
h-ing for our appli
ations using the methodology detailed in Se
tion 3.3, showingthat TwoStep su

essfully prefet
hes for a broad spe
trum of a

ess patterns.We then measure how this e�e
tiveness with a

ess patterns translates to ag-gregate speedups,
omparing overall
y
le-
ount redu
tions due to TwoStepwith two prior prefet
hing approa
hes. Our results show that TwoStep'sstrengths are
omplementary to prior approa
hes; it espe
ially performs wellon extremely irregular appli
ations su
h as sphinx, 188.ammp and 300.twolf131

that other te
hniques are unsuited to.The next three se
tions delve into the reasons for these di�ering strengths.In brief, an appli
ationmay be better suited to forward-looking pre
omputation-based prefet
hing or ba
kward-looking history-based prefet
hing. History-basedprefet
hing relies on �nding patterns (usually spatial) in the dynami
 addressstream of an appli
ation. It is better suited to appli
ations with spatial lo-
ality. Pre
omputation, on the other hand,
an handle more
omplex a

esspatterns where the address stream does not have a reliable pattern; how-ever it requires a lot more sequential
haining between prefet
hes to generatea

urate prefet
hes. As a result, it requires more
omputation per loop iter-ation to reliably provide improvements. We demonstrate this di
hotomy �rstwith a mi
roben
hmark study, then with a more detailed
hara
terization ofprefet
hing in real-world appli
ations to explore the relative strengths of regionprefet
hing and TwoStep.The �nal se
tions assess the relative importan
e of three importantparameters of our system: DRAM laten
y, the
apa
ity of TwoStep's FIFO,and the laten
y of pulls in transferring
a
he-lines from FIFO to DL1. Theseresults support our
hoi
e of baseline and show that implementing TwoStep isa realisti
 proposition on
urrent and future hardware.7.1 The e�e
tiveness of TwoStep prefet
hingA prefet
h te
hnique is traditionally evaluated along two dimensions:by its a

ura
y, and by its
overage. TwoStep's a

ura
y is
onsistently high.132

17
5.

vp
r

17
9.

ar
t

18
1.

m
cf

18
3.

eq
ua

ke

18
8.

am
m

p

25
6.

bz
ip

2

30
0.

tw
ol

f

sp
hi

nx

0

50

100
U

se
fu

l P
re

fe
tc

he
s

(%
)

Figure 7.1: The a

ura
y of TwoStep prefet
hing for our appli
ations.We measure a

ura
y as the fra
tion of
a
he-lines prefet
hed into the DL1that were used before evi
tion. Figure 7.1 shows that this fra
tion is uniformlyhigh a
ross all our appli
ations; 179.art exhibits the worst a

ura
y of 87%.As a result of the high a

ura
y, TwoStep prefet
hing rarely in
reases anappli
ation's bandwidth requirements to main memory. Indeed, as Figure 7.2shows, it sometimes redu
es
a
he misses at the DL1 or the L2 as a

urateprefet
hes improve temporal lo
ality in the
a
hes. We now des
ribe this �gurein more detail as we fo
us on the
overage of TwoStep.Evaluating
overage: Figure 7.2 shows the misses remaining in the DL1and the L2 after TwoStep prefet
hing relative to a baseline with no prefet
h-ing. Redu
tions in DL1 misses are due to useful pulls, and we return to thesein more detail in the Se
tion 7.6. We separate misses in the L2 to 3 separate
ategories: misses that were ex
lusively due to prefet
hes (i.e. miss laten
y133

17
5.

vp
r

17
9.

ar
t

18
1.

m
cf

18
3.

eq
ua

ke

18
8.

am
m

p

25
6.

bz
ip

2

30
0.

tw
ol

f

sp
hi

nx

0

20

40

60

80

100
M

is
se

s
(N

or
m

al
iz

ed
)

DL1 total
L2 prefetch exclusive
L2 prefetch and demand
L2 demand exclusive

Figure 7.2: Aggregate misses remaining after TwoStep prefet
hing. This met-ri
 underestimates the improvement due to TwoStep.was either entirely overlapped, or the prefet
h was useless), misses that wereinitiated by prefet
hes but subsequently also by demand fet
hes (i.e. miss la-ten
y was partially overlapped by prefet
hing), and misses that were initiatedex
lusively by demand fet
hes (i.e. no laten
y was overlapped by prefet
h-ing). Figure 7.2 shows that while prefet
hes initiated by TwoStep are mostlya

urate, di�erent appli
ations are able to leverage su
h prefet
hes to vary-ing degrees. In 181.m
f, for example, TwoStep redu
es total L2 misses by 17%and su

essfully overlaps all the laten
y of nearly half the remaining misses. In256.bzip2, however, the
ompiler is unable to generate any prefet
h programswith good densities, and so TwoStep provides no bene�t.Figure 7.2 exposes two disadvantages of using misses or miss-rate as ametri
 for measuring L2
overage. First, the redu
tion in aggregate DL1 andL2 misses often underestimates speedups as we show later. Se
ond, the ratioof demand misses to prefet
h misses also serves as a poor indi
ator of speedups134

17
5.

vp
r

17
9.

ar
t

18
1.

m
cf

18
3.

eq
ua

ke
18

8.
am

m
p

25
6.

bz
ip

2

30
0.

tw
ol

f

sp
hi

nx

0

50

100
S

ta
ll

cy
cl

es
 (

%
)

DS1
DS2
DS3

Figure 7.3: Stall
y
les remaining after TwoStep prefet
hing for the mostfrequently missing data stru
tures (DS1 and DS2 and DS3).due to prefet
hing. Demand fet
hes and prefet
hes are often overlapped bythe memory system in 3 appli
ations: 188.ammp, 300.twolf, and sphinx.These drawba
ks have a single basi

ause: pure miss
ounts are oftenpoorly
orrelated with performan
e in modern systems be
ause of the
om-plexity of queueing and s
heduling de
isions between multiple misses in thememory hierar
hy. Instead, our metri
 of
hoi
e is more immediate: timespent stalling due to memory laten
y. As des
ribed in Se
tion 3.7, we tra
k
y
les that the pipeline
ommits no instru
tions, assigning blame to the datastru
ture of the load at the head of the reorder bu�er.Figure 7.3 breaks down the e�e
t of TwoStep prefet
hing on stall
y-
les for 3 major data stru
tures in our appli
ations. TwoStep
onsistentlyredu
es stall
y
les a
ross a wide variety of ben
hmarks and a

ess patterns.The greatest redu
tions o

ur in memory intensive appli
ations with irregular135

17
5.

vp
r

17
9.

ar
t

18
1.

m
cf

18
3.

eq
ua

ke
18

8.
am

m
p

25
6.

bz
ip

2

30
0.

tw
ol

f

sp
hi

nx

0

10

20

30
S

pe
ed

up
 (

%
)

Tagged
SRP
GRP
TwoStep

Figure 7.4: Comparing prefet
h te
hniquesa

ess patterns | 181.m
f, 300.twolf and sphinx. Lower-magnitude redu
tions
an be seen for 183.equake (regular but memory-intensive) and 188.ammp (ir-regular but with lower
a
he miss-rates). The
ombination of the redu
tionsin stall
y
les and the fra
tion of useful prefet
hes shows that TwoStep is su
-
essful in its
ore design goal: prefet
hing a wide variety of a

ess patterns. Italso serves to highlight the appli
ations where we do better than others. Weexplore this question further in the next se
tion.7.2 Comparing prior approa
hesAs des
ribed in Chapter 5, Figure 7.4 shows the aggregate speedups ofTwoStep for our appli
ations relative to a baseline with no prefet
hing. We also
ompare TwoStep with one short-range and two prior long-range prefet
hingte
hniques | Tagged Prefet
hing, S
heduled Region Prefet
hing (SRP) [55℄and Guided Region Prefet
hing (GRP) [98℄, respe
tively. Tagged prefet
h is136

an example of a
ommon
ategory of simple hardware prefet
hing in
luded inmany produ
tion mi
ropro
essors. It prefet
hes the next
a
he-line on an L2
a
he miss, marks
a
he-lines so prefet
hes using an extra bit, and
ontinuesto prefet
h
a
he-lines and set their bits on the �rst use of a prefet
hed
a
he-line. This approa
h allows limited lookahead and
on
omitant improvementfor simple spatial patterns, but fails to improve less regular appli
ations. Ourresults
on�rm this.SRP uses the L2 prefet
h
ontroller to trigger spatial prefet
hes inan aligned 4KB region on en
ountering L2 misses, taking
are to prioritizedemand fet
hes and prefet
hes of di�erent regions and bounding the pollutionin the L2 due to useless regions when the appli
ation has no spatial lo
ality.GRP is a des
endant of SRP that performs aggressive
ompiler analysis toaugment important loads in the appli
ation with prefet
h hints. The prefet
h
ontroller in GRP also performs
ontent-based pointer prefet
hing that allowsit to run ahead of the appli
ation by a stati
ally bounded number of iterations.In spite of its support for various kinds of pointer-based prefet
hing, GRP'sresults are similar to those of SRP, getting most bene�t from spatial a

esspatterns but with greatly improved prefet
h a

ura
y and greatly redu
edmemory traÆ
 relative to SRP. All three sets of results use a
ommon Rambusmodel. However, GRP uses di�erent
ompiler and simulator infrastru
ture andis therefore measured against its own baseline.TwoStep outperforms GRP and SRP on the 4 most irregular appli
a-tions: 300.twolf, sphinx, 175.vpr and 188.ammp. Speedups are bounded by the137

memory intensiveness of the appli
ation; 175.vpr and 188.ammp have fairly lowmiss-rates. Another memory-intensive appli
ation with irregular a

ess pat-terns is 181.m
f, and TwoStep provides signi�
ant speedups that are nearlyidenti
al to the prior te
hniques. However, SRP and GRP improve 181.m
fonly due to a

idental spatial lo
ality in its layout; allo
ation and a

ess followthe same path through the data stru
ture. We believe the use of 181.m
f's sim-plex algorithm in a more general graph-optimization appli
ation with multiplepossible paths of a

ess would not attain this level of spatial lo
ality, makingTwoStep more e�e
tive in
omparison.Figure 7.4 also highlights the areas where TwoStep is not as e�e
tiveas prior approa
hes. 179.art and 183.equake are regular appli
ations that SRPand GRP are able to signi�
antly speed up. TwoStep also shows speedups forthem, but the speedups are not as signi�
ant. This la
k of improvement arisesbe
ause the pre
omputation approa
h for
es TwoStep to serialize prefet
heswhere approa
hes tuned for just spatial lo
ality
an issue multiple prefet
hesin parallel taking advantage of all available prefet
h bandwidth. The e�e
t ofthis parallel bandwidth depends on the relative quantities of
omputation permemory a

ess in an appli
ation; thus the di�eren
e is widest for 179.art whi
hspends nearly 90% of its time in extremely tight loops with 2-6 instru
tionsof
omputation per memory a

ess. 183.equake has more
omputation permemory a

ess,
on
omitantly improving the e�e
tiveness of TwoStep. Wenow support this reasoning in a mi
roben
hmark study.
138

lass Obje
t: // Size: one
a
he-lineObje
t* next[4℄int x[4℄ // PaddingObje
t f[OBJECTS℄ // Size: 10x L2
apa
ity// Ea
h element's next pointers// initialized randomly.Obje
t*
urrObj = fAr
hetype (regularity,
omputation):do 100-regularity times:do
omputation times:sum = (sum +
urrObj->value)%8
urrObj =
urrObj->next[i%4℄do regularity times:do
omputation times:sum = (sum +
urrObj->value)%8++
urrObjFigure 7.5: The Ar
hetype mi
roben
hmark for exploring the appli
ation
ov-erage of di�erent prefet
h s
hemes7.3 Mi
roben
hmark study: The spa
e of appli
ationbehaviorThis se
tion presents our
overage study to show that TwoStep is morebroadly-appli
able than prior approa
hes. We des
ribe a simple mi
roben
h-mark that allows us to tune two signi�
ant appli
ation features - the
omputevs memory-a

ess ratio (
omputation) and the fra
tion of regular vs irregu-lar and hard-to-predi
t memory a

esses in the dynami
 address stream seenby the memory hierar
hy (regularity). We design our mi
roben
hmark to139

0 25 50 75 10
0

regularity - Fraction of spatial memory access (%)

0.0

0.5

1.0

1.5
C

yc
le

s
(n

or
m

) 1
5
10
50
100
500
1000

computation

Figure 7.6: The
overage of GRP by iterations of
omputation per obje
ta

essed, and by regularity (both variables from Figure 7.5). GRP is biasedtowards the regular side of the spa
e.exaggerate the
ontrast between extremely regular and extremely irregular a
-
ess. Figure 7.5 shows the basi
 stru
ture of our Ar
hetype mi
roben
hmark.Ar
hetype
onsists of a large array of obje
ts an order of magnitude largerthan L2
apa
ity and a series of traversals over it of variable regularity. Toeliminate intra-obje
t misses, ea
h obje
t in the array is aligned and sizedto �t exa
tly in an L1/L2
a
he-line. Ea
h obje
t
ontains pointers that areinitialized to point to four other obje
ts in the array
hosen at random. Ea
hiteration/
all to Ar
hetype now traverses the array in a
ombination of �rst
ompletely irregular pointer-based a

ess and then
ompletely regular stride-1a

ess with good spatial lo
ality. Rather than try to enumerate the spa
e ofpossible a

ess patterns and obje
t sizes we sele
t these two types of a

esswith extreme
a
he behavior and study the e�e
t of their relative weight ondi�erent types of prefet
hing.Given the Ar
hetype mi
roben
hmark we
an now explore the speedups140

yielded by di�erent prefet
h s
hemes for di�erent values of regularity and
omputation. These speedups may be summarized in the form illustrated inFigure 7.6. This graph shows speedups for 5 groups of bars
orresponding todi�erent values of regularity on the x-axis, so that the set of bars at 100have perfe
tly spatial a

ess patterns while those at 0 have no spatial a

ess.Within ea
h group of bars we vary
omputation, the amount of
omputationper memory a

ess.Figure 7.6 exhibits several distin
t regions. First, areas with low valuesof
omputation per obje
t (left-most bars in ea
h group) present little oppor-tunity for overlapping laten
y and GRP (not unlike other prior s
hemes) failsto provide speedup. Se
ond, as we in
rease
omputation to extremely highlevels (right-most bars in ea
h group), Ar
hetype enters the spa
e of
ompute-bound appli
ations. Again, speedup due to prefet
hing is limited in this
ase.Between these two extremes lie the range of values for
omputation whereprefet
hing
an potentially provide speedups. SRP and GRP only improvethe regular side of this spa
e, gradually de
reasing speedups as Ar
hetype a
-
esses memory more irregularly in the groups on the left. This result is inagreement with �ndings of the original study; limitations in prioritizing be-tween pointers and a hard limit on the sla
k available to the prefet
her are themajor bottlene
ks in improving irregular appli
ations. The major improve-ment of GRP over SRP is redu
ed memory traÆ
 due to
ompiler hints thatsuppress useless region prefet
hes.Unlike SRP and GRP, TwoStep (Figure 7.7) improves both the regular141

0 25 50 75 10
0

regularity - Fraction of spatial memory access (%)

0.0

0.5

1.0

1.5
C

yc
le

s
(n

or
m

) 1
5
10
50
100
500
1000

computation

Figure 7.7: The
overage of TwoStep by iterations of
omputation per obje
ta

essed, and by regularity (both variables from Figure 7.5). Both regularand irregular appli
ations now bene�t from prefet
hing.and irregular sides of the spa
e, so that ea
h group of bars shows signi�
antspeedups for some level of
omputation. There are two important se
ondarye�e
ts. First, the serialization of pre
omputation
auses TwoStep to needmore
omputation per memory-a

ess to show speedups. We disabled our
ompiler's density
he
ks to for
e it to prefet
h at all levels of
omputation,and this
auses signi�
ant slowdowns for tight loops. In pra
ti
e our
ompilersimply ex
ludes su
h loops from TwoStep prefet
hing. Comparing the regularside of Figures 7.6 and 7.7 also shows this e�e
t { at 100% regular a

ess, GRPshows the most speedup at a lower level of
omputation than TwoStep does.Se
ond, greater breadth in the appli
ation spa
e is o�set by degrada-tion at some individual points in the spa
e relative to SRP and GRP. As thespeedup distribution graphs show, SRP and GRP usually have 1-2 points inthe spa
e with substantially higher speedup than TwoStep
an manage.
142

17
5.

vp
r

17
9.

ar
t

18
1.

m
cf

18
3.

eq
ua

ke

18
8.

am
m

p

25
6.

bz
ip

2

30
0.

tw
ol

f

sp
hi

nx

0

10

20

30
Sp

ee
du

p
(%

)
Tagged
SRP
GRP
TwoStep
TwoStep+GRP

Figure 7.8: Combining SRP with TwoStep gives the best of both worlds.Summary: In this se
tion, we presented a novel method to study the
ov-erage of a prefet
h s
heme in the spa
e of appli
ations. Varying appli
ationbehavior rather than parameters of the system it runs on is a relatively under-studied te
hnique for highlighting the advantages and
onstituen
ies of di�er-ent s
hemes. Our results show that TwoStep provides substantially greaterbreadth in the types of appli
ations it
an improve, at the
ost of redu
edspeedups in the portion of the spa
e that prior approa
hes have traditionallytargetted. They also highlight the
omplementary strengths and weaknessesof history- and pre
omputation-based prefet
hing approa
hes: the former ex-ploits prefet
h bandwidth but requires address regularity; the latter exploits
omplex a

ess patterns but requires more
omputation per memory a

ess.7.4 Combining history- and pre
omputation-based prefet
h-ingThe insight that history- and pre
omputation-based prefet
hing are
omplementary raises the possibility of
ombining them to get the best ofboth worlds. To explore this possibility we enhan
e the L2 prefet
h
ontroller143

to perform strided region prefet
hing when the TwoStep pre
omputation en-gine is disabled. Just like in SRP, region prefet
hes are s
heduled with lowerpriority than demand fet
hes or the more a

urate TwoStep prefet
hes, andare prefet
hed into the LRU way of the L2
a
he without being pushed ontothe FIFO. Figure 7.8 summarizes our results, extending the
omparison in Se
-tion 7.2 with a new bar for our
ombined prefet
hing approa
h. As this Figureshows,
ombining TwoStep with region prefet
hing gives us the best of bothworlds, providing the a

ura
y of pre
omputation-based prefet
hing in the ex-tremely irregular appli
ations that require it, and providing the bandwidthutilization of region prefet
hing in loops too dense for the TwoStep
ompilerto pre
ompute for, and also in the rare
ases of the prefet
h thread fallingbehind the main thread and giving up in regular appli
ations.Using region prefet
hing without the
ompiler hints of GRP
auses in-
reased bandwidth requirements just like SRP. In prin
iple it should be possi-ble to add GRP's
ompiler analyses and hints to the TwoStep
ompiler, thoughthey are
urrently implemented in separate
ompiler frameworks (S
ale and C-Breeze, respe
tively). Combining spatial prefet
h with TwoStep requires goodpollution
ontrol and prioritization to manage low spatial prefet
h a

ura
y.This is
on�rmed by experiments
ombining tagged prefet
h with TwoStep,whi
h show signi�
ant
on
i
t between the two approa
hes and no speedupsfor irregular appli
ations.Having
ompleted our
omparison and synthesis of pre
omputation-and history-based prefet
hing approa
hes, we now
on
lude our evaluation144

17
9.

ar
t

18
1.

m
cf

18
3.

eq
ua

ke

18
8.

am
m

p

30
0.

tw
ol

f

sp
hi

nx

0

10

20

30
Sp

ee
du

p
(%

) 104
208
312
416
624
832

DRAM latency
excluding queueing

Figure 7.9: How TwoStep's speedups s
ale with growing memory laten
y.with a series of sensitivity studies to study the e�e
t of di�erent system pa-rameters on TwoStep's performan
e.7.5 E�e
t of main-memory laten
y on prefet
h e�e
-tivenessAn important question when studying speedups due to prefet
hing ishow these speedups
hange as we in
rease laten
y to main memory. Figure 7.9answers this question. For ea
h appli
ation, the left-most bar shows the base-line RDRAM model used in the rest of this thesis, with RDRAM
lo
ked ata
y
le ratio of 4 relative to pro
essor frequen
y. We model in
reasing laten-
ies to main memory by
hanging just this
y
le ratio without adjusting therelative times spent by ea
h DRAM a

ess in its di�erent
onstituent phases:pre
harge, a
tivation, the read/write itself, and queuing delay.Figure 7.9 shows that in
reasing main-memory laten
ies redu
es the145

17
9.

ar
t

18
1.

m
cf

18
3.

eq
ua

ke

18
8.

am
m

p

30
0.

tw
ol

f

sp
hi

nx

0

10

20

30
Sp

ee
du

p
(%

) 104
208
312
416
624
832

DRAM latency
excluding queueing

Figure 7.10: How GRP's speedups s
ale with growing memory laten
y.speedup due to prefet
hing very slightly. For example, 300.twolf's speedup goesfrom 9.0% to 8.0% over a fa
tor of 8 in
rease in RDRAM laten
y (average readlaten
y in
reases from 92.5 to 742
y
les). Over the same spa
e IPC drops bya fa
tor of 4 from 0.66 to 0.15. This may seem implausible at �rst; as DRAMlaten
ies grow we would expe
t the pro
essor to be able to overlap less and lessof the large laten
y by prefet
hing. To explain why this is not the
ase, we fo
uson the dependen
e stru
ture of our programs. As DRAM laten
y in
reases, itbe
omes the primary fa
tor de
iding IPC. Sin
e the dependen
e
hains in anappli
ation are
onstant as DRAM laten
ies grow, the number of instru
tionsthat
an exe
ute overlapping with ea
h dynami
 DRAM a

ess will tend tostay
onstant. Similarly, any prefet
hes issued will start at approximately thesame instru
tion. Sin
e main memory bandwidth is likely to be relativelyhighly utilized, the limited lookahead window in the out-of-order pro
essormeans that as we in
rease memory laten
y the ratio of RDRAM a

esses to146

17
5.

vp
r

17
9.

ar
t

18
1.

m
cf

18
3.

eq
ua

ke
18

8.
am

m
p

25
6.

bz
ip

2

30
0.

tw
ol

f

sp
hi

nx

0

500

1000

1500
Sp

ee
du

p
(%

)
8KB
16KB
32KB
64KB
inf

Figure 7.11: Sensitivity of TwoStep's speedups to FIFO
apa
ity.instru
tions
ommitted remains the same. As a result the speedup due toprefet
hing is also largely maintained.Figure 7.10 shows the
orresponding �gure for GRP rather than TwoStep;on
e again in
reasing memory laten
y has only a slight e�e
t on prefet
hing ef-fe
tiveness. In the
ase of 183.equake it even
auses speedup to in
rease slightlyup to a
y
le ratio of 16 before tapering o�. This is explained by the relativelyhigh fra
tion of unutilized memory bandwidth for 183.equake at our baselineDRAM laten
y. As a result, it requires DRAM laten
ies to grow by a fa
tor of4 before memory bandwidth is nearly fully utilized. At that point the sequen-tialization between memory a

esses ki
ks in as des
ribed above, and speedupsstay largely
onstant past that point. Speedups due to pre
omputation-basedprefet
hing are more likely to have larger dropo�s with in
reasing memorylaten
y be
ause of the in
reased sequentialization of a

esses.
147

17
5.

vp
r

17
9.

ar
t

18
1.

m
cf

18
3.

eq
ua

ke
18

8.
am

m
p

25
6.

bz
ip

2

30
0.

tw
ol

f

sp
hi

nx

0

5

10

15
Sp

ee
du

p
(%

)
1
2
4
8
16

Figure 7.12: Sensitivity of TwoStep's speedups to laten
y of the �rst
a
he-lineon a pull. Subsequent
a
he-lines arrive 1
y
le apart. Further in
reases inlaten
y do not
ause more dropo�; the rightmost bar for ea
h group measuresthe speedup due to prefet
hing to L2 rather than DL1.7.6 Sensitivity studiesThe TwoStep design has two major parameters - FIFO
apa
ity andpull laten
y - that must be realisti
 in order for it to be feasible. We now eval-uate its sensitivity to these parameters. Figure 7.11 summarizes the speedupsobtained by TwoStep for our appli
ations and the sensitivity of these improve-ments to FIFO
apa
ity. A 2KB (32-entry) FIFO suÆ
es to provide most ofthe bene�t of an in�nite-
apa
ity FIFO, indi
ating the e�e
tiveness of theFIFO at realisti

apa
ities for
urrent te
hnologies [2℄.Figure 7.12 shows the e�e
t of pull laten
y on TwoStep's speedups. Wevary the laten
y of transfer of the �rst
a
he-line from FIFO to DL1, assumingpipelining allows subsequent
a
he-lines for ea
h pull to arrive 1
y
le apart atthe DL1. We �nd that a
ross all our appli
ations a 4-
y
le pull laten
y gives148

us the same speedups as a 1-
y
le laten
y.In
reasing the laten
y to 16
y
les or more
auses demand fet
hes tohit in the L2 before the pull arrives in the DL1. The right-most bar in Fig-ure 7.12 is thus a good indi
ation of the relative bene�t of TwoStep prefet
hingto the L2 and DL1 for our appli
ations. Di�erent appli
ations bene�t fromprefet
hing to the DL1 to varying degrees, with memory-intensive appli
ationslike 181.m
f and 300.twolf getting most of their bene�t from a

urate prefet
hto the L2, while regular appli
ations like 179.art and 183.equake also bene�tsigni�
antly from the pulls to the DL1.7.7 SummaryThis
hapter presented a detailed evaluation of the entire TwoStep mi-
roar
hite
ture and
ompiler tool
hain des
ribed in the previous two
hapters.We have shown that TwoStep prefet
hing provides
y
le-time redu
tions a
rossall the appli
ations we evaluated on relative to a baseline with no prefet
h-ing. Analyzing the results further, we �nd uniformly substantial a

ura
ies,but wide varian
e in prefet
h
overage, espe
ially for tight loops and regu-lar programs. While irregular appli
ations are uniformly improved relative toGRP, regular appli
ations often do signi�
antly better with prior approa
hes.We explore why and show that the need to serialize dependent prefet
hes isa disadvantage for TwoStep when running su
h appli
ations. More generally,pre
omputation- and history-based prefet
hing are
omplementary approa
hesand we identify the pre
ise appli
ation
hara
teristi
s that determine appli
a-149

tion aÆnity to one or the other.

150

Chapter 8Con
lusions
Prefet
hing is an attra
tive solution to growing memory laten
ies. Un-fortunately, implementing prefet
hing well has been a
hallenge for modernsystems resear
hers, largely be
ause of the wide variety of appli
ation behav-ior seen by modern
omputer systems. Every prefet
hing system must makede
isions on what to prefet
h, when to prefet
h it, and where to prefet
h itto. It must make a high volume of these de
isions without adding too mu
hoverhead. In this study we have highlighted the subtleties in making thesede
isions and the many ways that a me
hanism that improves one de
ision forone set of appli
ations may degrade the quality of another de
ision for a di�er-ent set. One major su
h tension is between history- and pre
omputation-basedapproa
hes for de
iding what to prefet
h. Using past history utilizes prefet
hbandwidth more eÆ
iently and makes timing de
isions easier, but may yieldlow-a

ura
y prefet
hes for
omplex irregular appli
ations. Using pre
omputa-tion guarantees a

urate prefet
hes, but serial dependen
es between prefet
hesworsen the problem of timing prefet
hes. In this dissertation we addressedthese intera
ting problems.

151

8.1 Summary of
ontributionsThe major theme in this dissertation has been that the
haoti
 be-havior of large appli
ations is an artifa
t of insuÆ
ient analysis, and
an bede
omposed into more regularly-behaved
omponents. We began by de
om-posing the address streams of appli
ations by data stru
ture and phase, andby showing that this pro
ess
an give insight into ea
h appli
ation's behaviorand yield a symboli
 a

ess pattern for the major loops in an appli
ation. Asappli
ations grow more
omplex, general-purpose pro
essors must be in
reas-ingly proa
tive in adapting to their
hanging needs over time. Data stru
turesand loops are ideal high-level stru
tures for designers to fo
us on in order togain insight.DTra
k, our tool for data stru
ture de
omposition, highlighted the widevariety of behaviors in modern appli
ations. Of the 8 appli
ations we studied,5
ontribute 90% of their
a
he misses in just three data stru
tures, while theother 3
an take as many as 100 data stru
tures. While the phase transi-tions in our appli
ations o

ur at the same points a
ross all data stru
tures,the behavior of di�erent data stru
tures and phases is widely variable. Ourappli
ations bene�t from an appli
ation-spe
i�
 sampling period at whi
h toperform phase analysis. Combining phase and data stru
ture pro�les yieldsdistilled summaries of the dominant a

ess patterns in our appli
ations, andhighlights the �rst a

ess to an obje
t in a loop iteration as the most frequent
ause of
a
he misses. Loop iteration footprints are tiny relative to
a
he
apa
ities, allowing us to aggressively tune for these �rst obje
t a

esses.152

We then used our understanding of these major loops to understand thedrawba
ks of prior prefet
h approa
hes, and to design a prefet
h s
heme thataddresses these drawba
ks by or
hestrating
a
he-lines into the level-1 data(DL1)
a
he in units of a loop iteration. TwoStep leverages modern
ompilerte
hniques to provide the memory hierar
hy with a distilled pi
ture of theappli
ation's a

ess patterns. Prefet
hes originate in the level-2 (L2)
a
he tominimize address traÆ
 and laten
y between dependent prefet
hes. De
isionsof what to prefet
h next are de
oupled from when to prefet
h. A FIFO betweenL2 and DL1 provides both a low-overhead
ow-
ontrol me
hanism that allowsthe rest of the system to largely ignore the possibility of pollution, and alsoprefet
hes data to the DL1 right before its use. We �nd these me
hanisms towork harmoniously together.The goal had been for this dissertation to provide a single set of me
h-anisms that are e�e
tive for the large variety of a

ess patterns seen in thewild. From that perspe
tive our results have been mixed. TwoStep workswell for programs with irregular a

ess patterns and reasonable levels of
om-putation per memory a

ess. While these
riteria seem reasonable, �ndingben
hmarks that �t them has been diÆ
ult, espe
ially when
oupled withtool
hain-imposed
onstraints | we require C sour
es and our
ompiler over-heads pre
luded running 3 SPEC2000 ben
hmarks. While we su

essfullyimprove irregular programs over prior work, our improvements for regular ap-pli
ations are lower than
ompeting approa
hes. Understanding why this isso is one of the
ontributions of this dissertation: pre
omputation imposes153

an ordering on prefet
hes and so is unable to fully utilize available prefet
hbandwidth. Rather than a te
hnique that subsumes prior approa
hes, we haveended up with an understanding of the
omplementary strengths of our ap-proa
h and prior te
hniques.Prefet
hing
an either look ba
k at past history or look forward bypre
omputing an appli
ation's future requirements. We have quanti�ed the
omplementary advantages of these te
hniques into two appli
ation-level prop-erties. Appli
ations with a low
ompute-a

ess ratio
an bene�t from history-based prefet
hing if their a

ess pattern is not too irregular. Appli
ations withirregular a

ess patterns are likely to require pre
omputation-based prefet
h-ing, as long as their
ompute-a

ess ratio is not too low. If the reader remem-bers one fa
t from this dissertation, we re
ommend this one.TwoStep is an elaborate system requiring pro�ling, whole-programanalysis, ISA modi�
ations and mi
roar
hite
tural
hanges. Over the ben
h-marks we evaluated TwoStep over, the average improvement relative to priorapproa
hes like SRP is insuÆ
ient to justify in
luding the additional
omplex-ity of TwoStep in a produ
tion design. However, I believe future trends willmake TwoStep more broadly appli
able. As
omputers have be
ome
heaperand more a

essible the trend in the last 30 years has been for appli
ations togrow more diverse (with new
ategories like streaming media and personal pro-du
tivity), more
omplex (word pro
essors
he
k grammar and also performspee
h re
ognition and synthesis) and more memory-intensive. These trendsare likely to
ontinue in future: the number of appli
ations running
on
ur-154

rently on a system, the variety of appli
ations, and the variety of phase behav-iors in an appli
ation are all likely to in
rease. Appli
ations that stream mediabut perform non-trivial
omputations in ea
h iteration, su
h as spee
h re
og-nition's beam sear
h, are prime
andidates for pre
omputation-based prefet
h-ing.8.2 The roads not taken: Challenges for future workWhen starting out, my goal was to explore ways in whi
h the hardware-software sta
k
ould be designed to be more responsive to the needs of individ-ual appli
ations, and to determine the e�e
tiveness of this approa
h in redu
ingthe time taken to run di�erent types of appli
ations. Impli
ations of this ap-proa
h are that both hardware and software may need to
hange, and that theinterfa
e between the two
ould bene�t from greater ri
hness. In the pro
essof writing this dissertation I have made many
hoi
es of avenues to pursue.While we have used the insights yielded by DTra
k to improve prefet
hing,there are many alternative appli
ations to these insights along three broadareas: improving stati
 appli
ation layout, improving
a
he repla
ement, andimproving s
heduling of data movement into the
a
hes.Improving data layout: An appli
ation's data layout
an be improvedin two ways: either by improving heap allo
ators or by providing multipleaddress mappings for individual memory lo
ations like the Impulse memory
ontroller [14℄. One interesting approa
h to improve an appli
ation's data lay-155

out is to provide not one version of mallo
 but multiple versions tuned fordi�erent types of a

ess patterns, relying on
ompiler support to repla
e
allsto mallo
() in the appli
ation with an appropriate spe
ialization. The mostsimilar study to this in the literature is by Wilson et al. [101℄. This approa
his however limited to appli
ations that rarely update their data stru
tures;appli
ations that update their data stru
tures at even a low rate end up witha random data layout if they run long enough. Appli
ations without updatesto the dominant data stru
tures will bene�t from this approa
h; our
ompilerimplementation shows, in
ombination with previous work, that determininga

ess patterns stati
ally is feasible. The open problem is translating a

esspatterns into a taxonomy of allo
ation poli
ies. We didn't have a

ess to abroad enough range of appli
ations to attempt su
h a taxonomy. Stati
 allo-
ation poli
ies to address the most frequent a

ess patterns are also synergisti
with multiple address mappings to take less frequent a

ess patterns into a
-
ount.Improving
a
he repla
ement: The se
ond
ategory of optimizations
on-sists of ways to improve
a
he repla
ement. Ca
he repla
ement
an be im-proved either by more adaptive poli
ies [74, 81℄ or by more sophisti
ated
a
hepartitioning. While both approa
hes have been tried in the past, a promisingline of atta
k in either
ategory is to explore in this
ontext the potential of anonline system to asso
iate data stru
ture
ategories with individual memoryaddresses. Creating a more
oarse-grained form of DTra
k analysis that
an be156

performed online with low overhead
ould help improve
a
he bypassing anddead-blo
k predi
tion de
isions for either performan
e improvement or powerredu
tion. A potential further re�nement is to bind spe
i�

a
he partitions tosets of data stru
tures. Espe
ially in
ombination with re
on�gurable
a
hes,this approa
h may help avoid
on
i
t between data stru
tures.Improvements to prefet
hing: TwoStep prefet
hing
an be improved inseveral ways. We outline three major ideas. First, TwoStep has lower speedupsthan region prefet
hing for extremely regular appli
ations. We have shownthat TwoStep and SRP
an be
ombined without
on
i
t to get the best ofboth worlds. This solution however su�ers from the potential low a

ura
y andin
reased bandwidth requirements of SRP. Combination with GRP has beenshown to be feasible, but
ompiler support for su
h a
ombination remainsto be implemented. A se
ond way to address regular/spatial appli
ations isto use multiple prefet
h threads like Kim and Yeung [47℄. In the
ontext ofTwoStep, this will require the
ompiler to generate multiple versions for ea
hprefet
h kernel: one to perform the in-order pushes to the FIFO from theL2, and another in potentially multiple instan
es to run ahead and prefet
hmultiple iterations of a loop in parallel. Third, the TwoStep
ompiler
ur-rently emits extremely unoptimized
ode to run on the L2
ontroller. Whileour appli
ations have shown no bene�t from optimizing further, it is possiblethat new appli
ations will be able to tolerate lower ratios of
omputation permemory a

ess with more optimized prefet
h kernels. Ea
h of these is | in157

des
ending order of promise | a potential sour
e of future improvement toprefet
hing for irregular and regular programs alike.Nonetheless, this dissertation has arti
ulated a new approa
h: of ex-ploring the feasibility of dynami
 adaptation using a ri
her interfa
e betweenhardware and software, and of using dynami
 adaptation to address more
om-plex appli
ations than have heretofore been taken into
onsideration in systemdesign. While the implementation
an be improved, �ne-grained or
hestrationand data
a
he management is a valid and
omplementary approa
h to priorapproa
hes that maximize prefet
h bandwidth utilization.

158

Appendix

The �gures in the following pages show, for ea
h of the major datastru
tures in our appli
ations, the raw time-varying data every 50 million
y
les for DL1 a

esses, DL1 misses (L2 a

esses), and L2 misses. We providean overview of these �gures, enumerating for ea
h appli
ation the dominantdata stru
tures in terms of total
a
he misses and their a

ess pattern. Formore data on these data stru
tures,
onsult Tables 3.3{3.5.159

Ben
hmark Data stru
ture A

ess pattern164.gzip window Regularprev Regularinbuf Regularfd Regular175.vpr node Regularheap Irregularnode route inf Irregularlinked f ptr Irregular177.mesa Image RegularDepth RegularVertex RegularNormal Regular179.art f1 layer Regulartds Regularbus Regular181.m
f nodes Irregularar
s Irregularperm Regularbasket Regular183.equake K[℄[℄ Regulardisp[℄ RegularK[℄ RegularK Regular188.ammp atom Irregularnodelist Regularatomlist Regularve
tor Regular256.bzip2 blo
k Irregularquadrant Irregularzptr Irregular300.twolf netarray[℄!netptr Irregulartmp rows[℄ Irregularrows[℄ Irregular
160

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 0 100 200 300 400 500 600 700

Time (50-million cycle samples)

"window__DL1-accesses__50"
"window__DL1-misses__50"

"window__L2-misses__50"

Figure1:164.gzip{window
161

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 2e+06

 0 100 200 300 400 500 600 700

Time (50-million cycle samples)

"huft_build_0__DL1-accesses__50"
"huft_build_0__DL1-misses__50"

"huft_build_0__L2-misses__50"

Figure2:164.gzip{prev
162

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 0 100 200 300 400 500 600 700

Time (50-million cycle samples)

"inbuf__DL1-accesses__50"
"inbuf__DL1-misses__50"

"inbuf__L2-misses__50"

Figure3:164.gzip{inbuf
163

 0

 100

 200

 300

 400

 500

 600

 0 100 200 300 400 500 600 700

Time (50-million cycle samples)

"fd__DL1-accesses__50"
"fd__DL1-misses__50"

"fd__L2-misses__50"

Figure4:164.gzip{fd
164

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 0 200 400 600 800 1000 1200 1400

Time (50-million cycle samples)

"rr_node__DL1-accesses__50"
"rr_node__DL1-misses__50"

"rr_node__L2-misses__50"

Figure5:175.vpr{rrnode
165

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 0 200 400 600 800 1000 1200 1400

Time (50-million cycle samples)

"heap__DL1-accesses__50"
"heap__DL1-misses__50"

"heap__L2-misses__50"

Figure6:175.vpr{rrheap
166

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 0 200 400 600 800 1000 1200 1400

Time (50-million cycle samples)

"heap[2]__DL1-accesses__50"
"heap[2]__DL1-misses__50"

"heap[2]__L2-misses__50"Figure7:175.vpr{rrnoderouteinf
167

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

 0 200 400 600 800 1000 1200 1400

Time (50-million cycle samples)

"linked_f__DL1-accesses__50"
"linked_f__DL1-misses__50"

"linked_f__L2-misses__50"Figure8:175.vpr{linkedfptr
168

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 2e+06

 0 100 200 300 400 500 600 700 800

Time (50-million cycle samples)

"ImageBuffer__DL1-accesses__50"
"ImageBuffer__DL1-misses__50"

"ImageBuffer__L2-misses__50"Figure9:177.mesa{ImageBuffer
169

 0

 100000

 200000

 300000

 400000

 500000

 600000

 0 100 200 300 400 500 600 700 800

Time (50-million cycle samples)

"depth_buffer__DL1-accesses__50"
"depth_buffer__DL1-misses__50"

"depth_buffer__L2-misses__50"Figure10:177.mesa{DepthBuffer
170

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 100 200 300 400 500 600 700 800

Time (50-million cycle samples)

"SurfaceVertices__DL1-accesses__50"
"SurfaceVertices__DL1-misses__50"

"SurfaceVertices__L2-misses__50"Figure11:177.mesa{Surfa
eVertexBuffer
171

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 100 200 300 400 500 600 700 800

Time (50-million cycle samples)

"SurfaceNormals__DL1-accesses__50"
"SurfaceNormals__DL1-misses__50"

"SurfaceNormals__L2-misses__50"Figure12:177.mesa{Surfa
eNormals
172

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 100 200 300 400 500 600 700 800

Time (50-million cycle samples)

"pixel_buffer__DL1-accesses__50"
"pixel_buffer__DL1-misses__50"

"pixel_buffer__L2-misses__50"Figure13:177.mesa{PixelBuffer
173

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 9e+06

 1e+07

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time (50-million cycle samples)

"f1_layer__DL1-accesses__50"
"f1_layer__DL1-misses__50"

"f1_layer__L2-misses__50"Figure14:179.art{f1layer
174

 400000

 500000

 600000

 700000

 800000

 900000

 1e+06

 1.1e+06

 1.2e+06

 1.3e+06

 1.4e+06

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time (50-million cycle samples)

"bus__DL1-accesses__50"
"bus__DL1-misses__50"

"bus__L2-misses__50"

Figure15:179.art{bus
175

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

 550000

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time (50-million cycle samples)

"tds__DL1-accesses__50"
"tds__DL1-misses__50"

"tds__L2-misses__50"

Figure16:179.art{tds
176

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

Time (50-million cycle samples)

"nodes__DL1-accesses__50"
"nodes__DL1-misses__50"

"nodes__L2-misses__50"

Figure17:181.m
f{nodes
177

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

Time (50-million cycle samples)

"arcs__DL1-accesses__50"
"arcs__DL1-misses__50"

"arcs__L2-misses__50"

Figure18:181.m
f{ar
s
178

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

Time (50-million cycle samples)

"perm__DL1-accesses__50"
"perm__DL1-misses__50"

"perm__L2-misses__50"

Figure19:181.m
f{perm
179

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

Time (50-million cycle samples)

"basket__DL1-accesses__50"
"basket__DL1-misses__50"

"basket__L2-misses__50"Figure20:181.m
f{basket
180

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

Time (50-million cycle samples)

"dummy_arcs__DL1-accesses__50"
"dummy_arcs__DL1-misses__50"

"dummy_arcs__L2-misses__50"Figure21:181.m
f{dummyar
s
181

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 5e+06

 0 200 400 600 800 1000 1200 1400

Time (50-million cycle samples)

"disp[]__DL1-accesses__50"
"disp[]__DL1-misses__50"

"disp[]__L2-misses__50"Figure22:183.equake{K[℄[℄
182

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 0 200 400 600 800 1000 1200 1400

Time (50-million cycle samples)

"K[][]__DL1-accesses__50"
"K[][]__DL1-misses__50"

"K[][]__L2-misses__50"Figure23:183.equake{disp[℄
183

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 0 200 400 600 800 1000 1200 1400

Time (50-million cycle samples)

"K[]__DL1-accesses__50"
"K[]__DL1-misses__50"

"K[]__L2-misses__50"

Figure24:183.equake{K[℄
184

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 0 200 400 600 800 1000 1200 1400

Time (50-million cycle samples)

"K__DL1-accesses__50"
"K__DL1-misses__50"

"K__L2-misses__50"

Figure25:183.equake{K
185

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 0 200 400 600 800 1000 1200 1400

Time (50-million cycle samples)

"disp__DL1-accesses__50"
"disp__DL1-misses__50"

"disp__L2-misses__50"Figure26:183.equake{disp
186

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 9e+06

 1e+07

 0 200 400 600 800 1000 1200

Time (50-million cycle samples)

"atom__DL1-accesses__50"
"atom__DL1-misses__50"

"atom__L2-misses__50"Figure27:188.ammp{atom
187

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 0 200 400 600 800 1000 1200

Time (50-million cycle samples)

"nodelist__DL1-accesses__50"
"nodelist__DL1-misses__50"

"nodelist__L2-misses__50"Figure28:188.ammp{nodelist
188

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 0 200 400 600 800 1000 1200

Time (50-million cycle samples)

"atomlist__DL1-accesses__50"
"atomlist__DL1-misses__50"

"atomlist__L2-misses__50"Figure29:188.ammp{atomlist
189

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 2e+06

 0 200 400 600 800 1000 1200

Time (50-million cycle samples)

"vector__DL1-accesses__50"
"vector__DL1-misses__50"

"vector__L2-misses__50"Figure30:188.ammp{ve
tor
190

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 0 100 200 300 400 500 600 700

Time (50-million cycle samples)

"block__DL1-accesses__50"
"block__DL1-misses__50"

"block__L2-misses__50"Figure31:256.bzip2{blo
k
191

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 0 100 200 300 400 500 600 700

Time (50-million cycle samples)

"quadrant__DL1-accesses__50"
"quadrant__DL1-misses__50"

"quadrant__L2-misses__50"Figure32:256.bzip2{quadrant
192

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 0 100 200 300 400 500 600 700

Time (50-million cycle samples)

"zptr__DL1-accesses__50"
"zptr__DL1-misses__50"

"zptr__L2-misses__50"

Figure33:256.bzip2{zptr
193

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 0 200 400 600 800 1000 1200 1400

Time (50-million cycle samples)

"netarray[]->netptr__DL1-accesses__50"
"netarray[]->netptr__DL1-misses__50"

"netarray[]->netptr__L2-misses__50"Figure34:300.twolf{netarray[℄!netptr
194

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 0 200 400 600 800 1000 1200 1400

Time (50-million cycle samples)

"tmp_rows__DL1-accesses__50"
"tmp_rows__DL1-misses__50"

"tmp_rows__L2-misses__50"Figure35:300.twolf{tmprows[℄
195

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 1e+06

 0 200 400 600 800 1000 1200 1400

Time (50-million cycle samples)

"rows__DL1-accesses__50"
"rows__DL1-misses__50"

"rows__L2-misses__50"Figure36:300.twolf{rows[℄
196

Bibliography[1℄ S. G. Abraham, R. A. Sugumar, D.Windheiser, B. R. Rau, and R. Gupta.Predi
tability of load/store instru
tion laten
ies. In Pro
eedings ofthe 28th International Symposium on Mi
roar
hite
ture, pages 139{152,Austin, TX, De
ember 1993.[2℄ V. Agarwal, M.S. Hrishikesh, S. W. Ke
kler, and Doug Burger. Clo
krate versus IPC: The end of the road for
onventional mi
roar
hite
tures.In Pro
eedings of the 27th International Symposium on Computer Ar
hi-te
ture, pages 248{259, Van
ouver, BC, June 2000.[3℄ Hassan Al-Sukhni, Ian Bratt, and Daniel A. Connors. Compiler-dire
ted
ontent-aware prefet
hing for dynami
 data stru
tures. In The 2003 In-ternational Conferen
e on Parallel Ar
hite
tures and Compilation Te
h-niques, page 91, 2003.[4℄ D. W. Anderson, F. J. Spara
io, and R. M. Tomasulo. The IBM Sys-tem/360 Model 91: Ma
hine philosophy and instru
tion-handling. IBMJournal of Resear
h and Development, 11(1):8{24, 1967.[5℄ Murali Annavaram, Jignesh M. Patel, and Edward S. Davidson. Dataprefet
hing by dependen
e graph pre
omputation. In Pro
eedings of the
197

28th annual international symposium on Computer ar
hite
ture, pages52{61, 2001.[6℄ Murali Annavaram, Ryan Rakvi
, Marzia Polito, Jean-Yves Bouguet,Ri
hard Hankins, and Bob Davies. The fuzzy
orrelation between
odeand performan
e predi
tability. In Pro
eedings of the 37th Annual In-ternational Symposium on Mi
roar
hite
ture, pages 93{104, 2004.[7℄ Bruno Blan
het. Es
ape analysis:
orre
tness proof, implementationand experimental results. In Pro
eedings of the 25th ACM SIGPLAN-SIGACT symposium on Prin
iples of programming languages, pages 25{37, 1998.[8℄ Keith Boland and Apostolos Dollas. Predi
ting and pre
luding problemswith memory laten
y. IEEE Mi
ro, 14(4):59{67, 1994.[9℄ D. Burger and T. M. Austin. The simples
alar tool set version 2.0.Te
hni
al Report 1342, Computer S
ien
es Department, University ofWis
onsin, June 1997.[10℄ D. Burger, J. R. Goodman, and A. K�agi. The de
lining e�e
tivenessof dynami

a
hing for general-puropose mi
ropro
essors. Te
hni
alReport 1216, Dept. of Computer S
ien
e, University of Wis
onsin atMadison, January 1995.[11℄ D. Burger, S. Kaxiras, and J. R. Goodman. DataS
alar ar
hite
tures.198

In Pro
eedings of the 24th International Symposium on Computer Ar-
hite
ture, pages 338{349, Denver, CO, June 1997.[12℄ B. Cahoon and K. S. M
Kinley. Data
ow analysis for software prefet
h-ing linked data stru
tures in java
ontroller. In The 2001 InternationalConferen
e on Parallel Ar
hite
tures and Compilation Te
hniques, pages280{291, Bar
elona, Spain, September 2001.[13℄ D. Callahan, K. Kennedy, and A. Porter�eld. Software prefet
hing.In Pro
eedings of the Fourth International Conferen
e on Ar
hite
turalSupport for Programming Languages and Operating Systems, pages 40{52, Santa Clara, CA, April 1991.[14℄ J. Carter, W. Hsieh, L. Stoller, M. Swanson, L. Zhang, E. Brunvand,A. Davis, C.-C. Kuo, R. Kuramkote, M. Parker, L. S
haeli
ke, andT. Tateyama. Impulse: Building a smarter memory
ontroller. In FifthInternational Symposium on High Performan
e Computer Ar
hite
ture,Orlando, FL, January 1999.[15℄ T. I. Chappell, B. A. Chappell, S. E. S
huster, J. W. Allan, S. P. Klepner,R. V. Joshi, and R. L. Fran
h. A 2-ns
y
le, 3.8-ns a

ess 512-kb CMOSECL SRAM with a fully pipelined ar
hite
ture. IEEE Journal of Solid-State Cir
uits, 26(11):1,577{1,585, November 1991.[16℄ M. Charney and A. Reeves. Generalized
orrelation-based hardwareprefet
hing. Te
hni
al Report EE CEG 95-1, Cornell University, Feb1995. 199

[17℄ D. R. Chase, M. Wegman, and F. K. Zade
k. Analysis of pointers andstru
tures. In Pro
eedings of the SIGPLAN '90 Conferen
e on Pro-gramming Language Design and Implementation, pages 296{310, WhitePlains, NY, June 1990.[18℄ T. Chen and J. Baer. Redu
ing memory laten
y via non-blo
king andprefet
hing
a
hes. In Pro
eedings of the Fifth International Conferen
eon Ar
hite
tural Support for Programming Languages and Operating Sys-tems, pages 51{61, Boston, MA, O
tober 1992.[19℄ T. Chen and J. Baer. E�e
tive hardware based data prefet
hing. IEEETransa
tions on Computers, 44(5):609{623, May 1995.[20℄ Trishul M. Chilimbi and Martin Hirzel. Dynami
 hot data streamprefet
hing for general-purpose programs. In Pro
eeding of the ACMSIGPLAN 2002 Conferen
e on Programming language design and im-plementation, 2002.[21℄ J. Choi, M. Burke, and P. Carini. EÆ
ient
ow-sensitive interpro
edural
omputation of pointer-indu
ed aliases and side e�e
ts. In Pro
eedingsof the Twentieth Annual ACM Symposium on the Prin
iples of Program-ming Languages, pages 232{245, Charleston, SC, January 1993.[22℄ Seungryul Choi, Ni
holas Kohout, Sumit Pamnani, Dongkeun Kim, andDonald Yeung. A general framework for prefet
h s
heduling in linkeddata stru
tures and its appli
ation to multi-
hain prefet
hing. ACMTrans. Comput. Syst., 22(2):214{280, 2004.200

[23℄ Robert Cooksey, Stephan Jourdan, and Dirk Grunwald. A stateless,
ontent-dire
ted data prefet
hing me
hanism. In Pro
eedings of theTenth International Conferen
e on Ar
hite
tural Support for Program-ming Languages and Operating Systems, pages 279{290, 2002.[24℄ M. Das. Uni�
ation-based pointer analysis with dire
tional assignments.In Pro
eedings of the SIGPLAN 2000 Conferen
e on Programming Lan-guage Design and Implementation, pages 35{46, Van
ouver, BC, June2000.[25℄ Rajagopalan Desikan, Doug Burger, and Stephen W. Ke
kler. Mea-suring experimental error in mi
ropro
essor simulation. In Pro
eedingsof the 28th Annual International Symposium on Computer Ar
hite
ture,pages 266{277, July 2001.[26℄ Alain Deuts
h. On the
omplexity of es
ape analysis. In Pro
eed-ings of the 24th ACM SIGPLAN-SIGACT symposium on Prin
iples ofprogramming languages, pages 358{371, 1997.[27℄ M. Emami, R. Ghiya, and L. J. Hendren. Context-sensitive interpro
e-dural Points-to analysis in the presen
e of fun
tion pointers. In Pro
eed-ings of the SIGPLAN '94 Conferen
e on Programming Language Designand Implementation, pages 242{256, June 1994.[28℄ Brian Fields, Shai Rubin, and Rastislav Bodík. Fo
using pro-
essor poli
ies via
riti
al-path predi
tion. In Pro
eedings of the 28th201

annual international symposium on Computer ar
hite
ture, pages 74{85,2001.[29℄ D. Grove and L. Tor
zon. Interpro
edural
onstant propagation: Astudy of jump fun
tion implementations. In Pro
eedings of the SIG-PLAN '93 Conferen
e on Programming Language Design and Imple-mentation, pages 90{99, Albuquerque, NM, June 1993.[30℄ Samuel Z. Guyer, Daniel A. Jim�enez, and Calvin Lin. The C-Breeze
ompiler infrastru
ture. Te
hni
al Report TR 01-43, Dept. of ComputerS
ien
es, University of Texas at Austin, November 2001.[31℄ Ilkka J. Haikala and Petri H. Kutvonen. Split
a
he organizations. InPerforman
e '84: Pro
eedings of the Tenth International Symposium onComputer Performan
e Modelling, Measurement and Evaluation, pages459{472. North-Holland, 1985.[32℄ J. Hennessy and D. Patterson. Computer Ar
hite
ture A QuantitativeApproa
h. Morgan Kaufmann Publishers, San Mateo, CA, 1995.[33℄ M. D. Hill. A
ase for dire
t-mapped
a
hes. IEEE Computer, 21(12):25{40, De
ember 1988.[34℄ M. Hind, M. Burke, P. Carini, and J. Choi. Interpro
edural pointer aliasanalysis. ACM Transa
tions on Programming Languages and Systems,21(4):848{894, July 1999. 202

[35℄ Mi
hael Hind, Mi
hael Burke, Paul Carini, and Sam Midki�. An em-piri
al study of pre
ise interpro
edural array analysis. S
i. Program.,3(3):255{271, 1994.[36℄ Susan Horwitz, Thomas Reps, and David Binkley. Interpro
edural sli
-ing using dependen
e graphs. ACM Trans. Program. Lang. Syst.,12(1):26{60, 1990.[37℄ Ibrahim Hur and Calvin Lin. Adaptive history-based memory s
hed-ulers. In MICRO 37: Pro
eedings of the 37th annual IEEE/ACM Inter-national Symposium on Mi
roar
hite
ture, pages 343{354, 2004.[38℄ Ibrahim Hur and Calvin Lin. Memory prefet
hing using adaptive streamdete
tion. In MICRO 39: Pro
eedings of the 39th Annual IEEE/ACMInternational Symposium on Mi
roar
hite
ture, pages 397{408, 2006.[39℄ W. Hwu and Y. N. Patt. HPSm, a high performan
e restri
ted data
ow ar
hite
ture having minimal fun
tionality. In Pro
eedings of the13th annual international symposium on Computer ar
hite
ture, pages297{306, Los Alamitos, CA, USA, 1986.[40℄ Sorin Ia
obovi
i, Lawren
e Spra
klen, Sudarshan Kadambi, Yuan Chou,and Santosh G. Abraham. E�e
tive stream-based and exe
ution-baseddata prefet
hing. In ICS '04: Pro
eedings of the 18th annual interna-tional
onferen
e on Super
omputing, pages 1{11, 2004.
203

[41℄ Doug Joseph and Dirk Grunwald. Prefet
hing using markov predi
tors.In Pro
eedings of the 24th annual international symposium on Computerar
hite
ture, pages 252{263, 1997.[42℄ N. P. Jouppi. Improving dire
t-mapped
a
he performan
e by the ad-dition of a small fully-asso
iative
a
he and prefet
h bu�ers. In Pro-
eedings of the 17th International Symposium on Computer Ar
hite
ture,pages 364{373, Seattle, WA, June 1990.[43℄ Norman P. Jouppi. Improving dire
t-mapped
a
he performan
e by theaddition of a small fully-asso
iative
a
he prefet
h bu�ers. In 25 YearsISCA: Retrospe
tives and Reprints, pages 388{397, 1998.[44℄ Spiros Kalogeropulos, Mahadevan Rajagopalan, Vikram Rao, YonghongSong, and Partha Tirumalai. Pro
essor aware anti
ipatory prefet
hingin loops. In Pro
eedings of the 10th International Symposium on HighPerforman
e Computer Ar
hite
ture, page 106, 2004.[45℄ M. Karlsson, F. Dahlgren, and P. Stenstrom. A prefet
hing te
hnique forirregular a

esses to linked data stru
tures. Toulouse, Fran
e, January2000.[46℄ Changkyu Kim, Doug Burger, and Stephen W. Ke
kler. An adaptive,non-uniform
a
he stru
ture for wire-delay dominated on-
hip
a
hes.In Pro
eedings of the Tenth International Conferen
e on Ar
hite
turalSupport for Programming Languages and Operating Systems, pages 211{222, 2002. 204

[47℄ Dongkeun Kim and Donald Yeung. A study of sour
e-level
ompiler al-gorithms for automati

onstru
tion of pre-exe
ution
ode. ACM Trans-a
tions on Computer Systems, 22(3), 2004.[48℄ Kiyoshi Kurihara, David Chaiken, and Anant Agarwal. Laten
y toler-an
e through multi-threading in large-s
ale multipro
essors. In Pro
eed-ings of the International Symposium on Shared Memory Multipro
essing,pages 91{101, 1991.[49℄ An-Chow Lai, Cem Fide, and Babak Falsa�. Dead-blo
k predi
tion& dead-blo
k
orrelating prefet
hers. In Pro
eedings of the 28th annualinternational symposium on Computer ar
hite
ture, pages 144{154, 2001.[50℄ Loren Larsen and Mary Jean Harrold. Sli
ing obje
t-oriented software.In ICSE '96: Pro
eedings of the 18th international
onferen
e on Soft-ware engineering, pages 495{505, 1996.[51℄ Jeremy Lau, Ja
k Sampson, Erez Perelman, Greg Hamerly, and BradCalder. The strong
orrelation between
ode signatures and perfor-man
e. In Pro
eedings of the IEEE International Symposium on Per-forman
e Analysis of Systems and Software, Mar
h 2005.[52℄ Jeremy Lau, Stefan S
hoenma
kers, and Brad Calder. Stru
tures forphase
lassi�
ation. In Pro
eedings of the IEEE International Sympo-sium on Performan
e Analysis of Systems and Software, Mar
h 2004.
205

[53℄ A. R. Lebe
k and D. A. Wood. Ca
he pro�ling and the SPEC ben
h-marks: A
ase study. IEEE Computer, 27:15{26, O
tober 1994.[54℄ Steve S.W. Liao, Perry H. Wang, Hong Wang, Gerolf Ho
ehner, DanielLavery, and John P. Shen. Post-pass binary adaptation for software-based spe
ulative pre
omputation. In PLDI '02: Pro
eedings of theACM SIGPLAN 2002 Conferen
e on Programming language design andimplementation, pages 117{128, 2002.[55℄ W. Lin, S. K. Reinhardt, and D. Burger. Redu
ing DRAM laten
ieswith an integrated memory hierar
hy design. In International Confer-en
e on High-Performan
e Computer Ar
hite
ture, pages 301{312, Mon-terrey, Mexi
o, January 2001.[56℄ M. H. Lipasti, W. J. S
hmidt, S. R. Kunkel, and R. R. Roediger. SPAID:Software prefet
hing in pointer- and
all-intensive environments. InPro
eedings of the 28th Annual IEEE/ACM International Symposiumon Mi
roa
hite
ture, 1995.[57℄ Mi
hael Litzkow, Miron Livny, and Matt Mutka. Condor - a hunter ofidle workstations. In Pro
eedings of the 8th International Conferen
e ofDistributed Computing Systems, pages 104{111, June 1988.[58℄ P. G. Lowney, S. M. Freudenberger, T. J. Karzes, W. D. Li
htenstein,R. P. Nix, J. S. O'Donnell, and J. C. Ruttenberg. The multi
ow tra
es
heduling
ompiler. The Journal of Super
omputing, 7:51{143, 1993.206

[59℄ C. Luk and T. C. Mowry. Cooperative prefet
hing: Compiler and hard-ware support for e�e
tive instru
tion prefet
hing in modern pro
essors.In Pro
eedings of the 31st International Symposium on Mi
roar
hite
-ture, Dallas, TX, De
ember 1998.[60℄ M. Martonosi, A. Gupta, and T. E. Anderson. MemSpy: Analyzingmemory system bottlene
ks in programs. In Pro
eedings of the ACMSIGMETRICS Conferen
e on Measurement & Modeling Computer Sys-tems, pages 1{12, Newport, RI, June 1992.[61℄ M. Martonosi, A. Gupta, and T. E. Anderson. E�e
tiveness of tra
esampling for performan
e debugging tools. In Pro
eedings of the ACMSIGMETRICS Conferen
e on Measurement & Modeling Computer Sys-tems, pages 248{259, Santa Clara, CA, May 1993.[62℄ K. S. M
Kinley, J. Burrill, M. Bond, D. Burger, B. Cahoon, J. Gibson,J. E. B. Moss, A. Smith, Z. Wang, and C. Weems. The s
ale
om-piler. Te
hni
al report, University of Massa
hussetts at Amherst, 2005.http://ali-www.
s.umass.edu/�s
ale/.[63℄ K. S. M
Kinley and O. Temam. A quantitative analysis of loop nestlo
ality. In Pro
eedings of the Seventh International Conferen
e on Ar-
hite
tural Support for Programming Languages and Operating Systems,pages 94{104, Cambridge, MA, O
tober 1996.[64℄ K. S. M
Kinley and O. Temam. Quantifying loop nest lo
ality using207

SPEC'95 and the Perfe
t ben
hmarks. ACM Transa
tions on ComputerSystems, 17(4):288{336, November 1999.[65℄ Soo-Mook Moon and Kemal Eb
ioglu. An eÆ
ient resour
e-
onstrainedglobal s
heduling te
hnique for supers
alar and vliw pro
essors. InMICRO 25: Pro
eedings of the 25th annual international symposium onMi
roar
hite
ture, pages 55{71, Los Alamitos, CA, USA, 1992.[66℄ Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt. Runaheadexe
ution: An alternative to very large instru
tion windows for out-of-order pro
essors. In Pro
eedings of the 9th International Symposium onHigh-Performan
e Computer Ar
hite
ture, page 129, 2003.[67℄ C. R. Myers. Software systems as
omplex networks: stru
ture, fun
-tion, and evolvability of software
ollaboration graphs. Physi
al ReviewE, 68:046116{1{046116{15, 2003.[68℄ Priya Nagpurkar, Mi
hael Hind, Chandra Krintz, Peter Sweeney, andV.T. Rajan. Online phase dete
tion algorithms. In Pro
eedings of the4th annual international symposium on
ode generation and optimiza-tion, Mar
h 2006.[69℄ V. Pai and S. Adve. Comparing and
ombining read miss
lustering andsoftware prefet
hing. In The 2001 International Conferen
e on ParallelAr
hite
tures and Compilation Te
hniques, 2001.
208

[70℄ Vijay S. Pai, Parthasarathy Ranganathan, and Sarita V. Adve. Theimpa
t of instru
tion-level parallelism on multipro
essor performan
eand simulation methodology. In Pro
eedings of the 3rd InternationalSymposium on High Performan
e Computer Ar
hite
ture, pages 72{83,February 1997.[71℄ S. Pala
harla and R. E. Kessler. Evaluating stream bu�ers as a se
-ondary
a
he repla
ement. In Pro
eedings of the 21th InternationalSymposium on Computer Ar
hite
ture, pages 24{33, Chi
ago, IL, April1994.[72℄ D. L. Parnas, P. C. Clements, and D. M. Weiss. The modular stru
-ture of
omplex systems. In ICSE '84: Pro
eedings of the 7th interna-tional
onferen
e on Software engineering, pages 408{417, Pis
ataway,NJ, USA, 1984.[73℄ Steven A. Przybylski. Ca
he and memory hierar
hy design: a performan
e-dire
ted approa
h. Morgan Kaufmann Publishers In
., San Fran
is
o,CA, USA, 1990.[74℄ Moinuddin K. Qureshi, David Thompson, and Yale N. Patt. The v-way
a
he: Demand based asso
iativity via global repla
ement. InPro
eedings of the 32nd Annual International Symposium on ComputerAr
hite
ture, pages 544{555, 2005.[75℄ A. G. Reinig. Alias analysis in the DEC C and C++
ompilers. DigitalTe
hni
al Journal, 10(1):48{57, 1999.209

[76℄ A. Roth and G. Sohi. E�e
tive jump-pointer prefet
hing for linkeddata stru
tures. In Pro
eedings of the 26th International Symposium onComputer Ar
hite
ture, Atlanta, GA, May 1999.[77℄ Amir Roth, Andreas Moshovos, and Gurindar S. Sohi. Dependen
ebased prefet
hing for linked data stru
tures. In Pro
eedings of theEighth International Conferen
e on Ar
hite
tural Support for Program-ming Languages and Operating Systems, pages 115{126, 1998.[78℄ Shai Rubin, Rastislav Bodik, and Trishul M. Chilimbi. An eÆ
ientpro�le-analysis framework for data-layout optimizations. In Pro
eed-ings of the 29th ACM SIGPLAN-SIGACT symposium on Prin
iples ofprogramming languages, 2002.[79℄ Radu Rugina and Martin Rinard. Automati
 parallelization of divideand
onquer algorithms. In PPoPP '99: Pro
eedings of the seventhACM SIGPLAN symposium on Prin
iples and pra
ti
e of parallel pro-gramming, pages 72{83, 1999.[80℄ A. Sezne
. A
ase for two-way skewed asso
iative
a
hes. In Pro
eedingsof the 20th International Symposium on Computer Ar
hite
ture, pages169{178, San Diego, CA, May 1993.[81℄ André Sezne
. A
ase for two-way skewed-asso
iative
a
hes.SIGARCH Comput. Ar
hit. News, 21(2):169{178, 1993.
210

[82℄ Xipeng Shen, Yutao Zhong, and Chen Ding. Lo
ality phase predi
tion.In Pro
eedings of the Eleventh International Conferen
e on Ar
hite
turalSupport for Programming Languages and Operating Systems, pages 165{176, 2004.[83℄ Timothy Sherwood, Erez Perelman, and Brad Calder. Basi
 blo
k distri-bution analysis to �nd periodi
 behavior and simulation points in appli-
ations. In The 2001 International Conferen
e on Parallel Ar
hite
turesand Compilation Te
hniques, pages 3{14, September 2001.[84℄ Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad Calder.Automati
ally
hara
terizing large s
ale program behavior. In Interna-tional Conferen
e on Ar
hite
tural Support for Programming Languagesand Operating Systems, pages 45{57, O
tober 2002.[85℄ Timothy Sherwood, Suleyman Sair, and Brad Calder. Predi
tor-dire
tedstream bu�ers. InMICRO 33: Pro
eedings of the 33rd annual ACM/IEEEinternational symposium on Mi
roar
hite
ture, pages 42{53, 2000.[86℄ Timothy Sherwood, Suleyman Sair, and Brad Calder. Phase tra
kingand predi
tion. In Pro
eedings of the 30th International Symposium ofComputer Ar
hite
ture, pages 336{347, June 2003.[87℄ A. J. Smith. Ca
he memories. Computing Surveys, 14(3):473{530,September 1982.
211

[88℄ A. J. Smith. Bibliography and readings on CPU
a
he memories andrelated topi
s. Computer Ar
hite
ture News, 14(1):22{42, January 1986.[89℄ A. J. Smith. Se
ond bibliography on
a
he memories. Computer Ar
hi-te
ture News, 19(4):154{182, June 1991.[90℄ James E. Smith. De
oupled a

ess/exe
ute
omputer ar
hite
tures.ACM Trans. Comput. Syst., 2(4):289{308, 1984.[91℄ James E. Smith and Andrew R. Pleszkun. Implementing pre
ise inter-rupts in pipelined pro
essors. IEEE Trans. Comput., 37(5):562{573,1988.[92℄ S. Srinivasan, R. Ju, A. R. Lebe
k, and C. Wilkerson. Lo
ality vs.
riti-
ality. In Pro
eedings of the 28th International Symposium on ComputerAr
hite
ture, pages 132{144, June 2001.[93℄ Karthik Sundaramoorthy, Za
h Purser, and Eri
 Rotenburg. Slipstreampro
essors: improving both performan
e and fault toleran
e. In Pro
eed-ings of the Ninth International Conferen
e on Ar
hite
tural Support forProgramming Languages and Operating Systems, pages 257{268, 2000.[94℄ Mi
hael Bedford Taylor, Walter Lee, Jason Miller, David Wentzla�, IanBratt, Ben Greenwald, Henry Ho�mann, Paul Johnson, Jason Kim,James Psota, Arvind Saraf, Nathan Shnidman, Volker Strumpen, MattFrank, Saman Amarasinghe, and Anant Agarwal. Evaluation of the rawmi
ropro
essor: An exposed-wire-delay ar
hite
ture for ilp and streams.212

In Pro
eedings of the 31st annual international symposium on Computerar
hite
ture, page 2, 2004.[95℄ Te
k Bok Tok, Samuel Z. Guyer, and Calvin Lin. EÆ
ient
ow-sensitiveinterpro
edural data-
ow analysis in the presen
e of pointers. In Pro-
eedings of the 15th International Conferen
e on Compiler Constru
tion(CC 2006), pages 17{31, 2006.[96℄ E. van der Deijl, G. Kanbier, O. Temam, and E. Granston. A
a
hevisualization tool. IEEE Computer, 30:71{78, July 1997.[97℄ S. P. VanderWiel and D. J. Lilja. A
ompiler-assisted data prefet
h
ontroller. In Pro
eedings of International Conferen
e on ComputerDesign, pages 372{377, O
tober 1999.[98℄ Z. Wang, D. Burger, K. S. M
Kinley, S. Reinhardt, and C. C. Weems.Guided region prefet
hing: A
ooperative hardware/software approa
h.In Pro
eedings of the 30th International Symposium on Computer Ar-
hite
ture, pages 388{398, San Diego, CA, June 2003.[99℄ Zhenlin Wang, Doug Burger, Steven K. Reinhardt, Kathryn S. M
Kin-ley, and Charles C Weems. Guided region prefet
hing: A
ooperativehardware/software approa
h. In Pro
eedings of the 30th InternationalSymposium on Computer Ar
hite
ture, June 2003.[100℄ Mark Weiser. Program sli
ing. In ICSE '81: Pro
eedings of the 5th213

international
onferen
e on Software engineering, pages 439{449, Pis-
ataway, NJ, USA, 1981.[101℄ P. R. Wilson, M. S. Lam, and T. G. Moher. E�e
tive stati
-graph reor-ganization to improve lo
ality in garbage-
olle
ted systems. In Pro
eed-ings of the SIGPLAN '91 Conferen
e on Programming Language Designand Implementation, pages 177{191, Toronto, Canada, June 1991.[102℄ Chia-Lin Yang and Alvin R. Lebe
k. Push vs. pull: data movement forlinked data stru
tures. In ICS '00: Pro
eedings of the 14th international
onferen
e on Super
omputing, pages 176{186, 2000.[103℄ Chia-Lin Yang, Alvin R. Lebe
k, Hung-Wei Tseng, and Chien-Hao Lee.Tolerating memory laten
y through push prefet
hing for pointer-intensiveappli
ations. ACM Trans. Ar
hit. Code Optim., 1(4):445{475, 2004.[104℄ Weifeng Zhang, Dean M. Tullsen, and Brad Calder. A

elerating andadapting pre
omputation threads for eÆ
ient prefet
hing. In Pro
eed-ings of the 13th International Symposium on High Performan
e Com-puter Ar
hite
ture, pages 85{95, 2007.[105℄ Huiyang Zhou. Dual-
ore exe
ution: Building a highly s
alable single-thread instru
tion window. In The 2005 International Conferen
e onParallel Ar
hite
tures and Compilation Te
hniques, pages 231{242, 2005.
214

VitaKartik Kandadai Agaram graduated from high s
hool in 1995 out ofKendriya Vidyalaya, Pi
ket, Se
underabad, India. In 1999 he re
eived a Ba
h-elor of Engineering (B.E.) degree in Computer S
ien
e and Engineering fromSri Venkateswara College of Engineering, University of Madras, India. He en-tered the graduate program in the Department of Computer S
ien
es at theUniversity of Texas at Austin in August 1999, and re
eived a Master of S
ien
e(M.S.) degree in 2005.
Permanent address: akkartik�gmail.
om
This dissertation was typeset with LATEXy by the author.yLATEX is a do
ument preparation system developed by Leslie Lamport as a spe
ialversion of Donald Knuth's TEX Program. 215

