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Abstract

The use of registers instead of memory operands is an effective performance enhancement as well as a power
saving mechanism, but compilers still cannot allocate many of the memory references of a program into registers,
for two fundamental reasons unrelated to the size of the register file: (1) dynamically varying load/store operand
addresses, and (2) inherent limitations of compile time alias analysis. Previously proposed architectural features
such as CRegs [2] or IA-64 ALAT [1] mechanisms have only addressed the aliasing portion of the two fundamental
impediments.

In this paper, we have designed an ideal “limit register allocation machine,” as a theoretical tool to gain insight
into the essence of the register allocation problem, and to address both of the fundamental impediments. The limit
machine uses only register operations in its ISA (performs memory operations only for automatic register spills and
fills) and has a unique capability to modify the register fields of instructions at run time. Based on the experience
with this limit machine, we have also proposed:

(1) A software emulation method for the limit machine, which, after performing optimizations such as par-
tial redundancy elimination, can result in efficient register allocation of memory references for loads/stores with
dynamically varying addresses, which could not be register-allocated with any of the previous techniques.

(2) A hardware implementation of concepts from the limit machine, by adding a dynamically changing operand
location prediction field (“Predicted Register Number”) to each load/store instruction, which can improve the per-
formance of data L1 caches by speculatively accessing the predicted operand location in the D-L1 cache array directly
(as if it were a “register file”), as soon as the instruction is available, without first going through the base register
read, address arithmetic, address translation, and associative search phases.

U

1 Introduction

Register allocation enables us to place the contents of a memory address X into a register r and allows us to
refer to the contents of X (perhaps a 32 or 64 bit address, obtained by accessing a base register, possibly performing
address arithmetic, performing virtual to real translation and then accessing an associative cache) by its current
physical location r (a short, perhaps 5-8 bit, register number, directly encoded inside the instruction). By placing
frequently referenced memory variables into registers, and in effect compressing the address trace of a program by
replacing full-width addresses of load/store operands with references to register numbers, a compiler can achieve
significant performance benefits, as well as power reduction, compared to using a standard memory hierarchy
accessed through loads and stores.

But precisely how does a compiler decide when the contents of a memory location X can be allocated in a register
r? Although enumerating the many alternative register allocation research approaches of the past, e.g., [3, 4, 5],
will likely be too long for our purposes, we will present here what we believe to be a useful “canonical abstraction”
of the register allocation problem.



To separate the basic feasibility of register allocation from the restrictions coming solely from the size of the
register file, we will first assume that we have an unlimited number of registers. Suppose the compiler has somehow
determined that a candidate set of static! load-store instructions in a code fragment will refer to a fixed memory
address X during the execution of the code fragment. X is in general not a constant address, but it is a simple
function of the initial contents of the machine registers, before the code fragment starts execution. For example, X
could be “the value of the expression r3+4 in the starting state,” which will stay fixed during a particular execution,
but which may indicate different addresses in different executions, depending on the initial value of r3. Below, we
will describe a code transformation to keep the contents of such a memory address in a register, throughout the
entire code fragment.

The canonical register allocation code transformation. Given a single-entry code fragment, a memory ad-
dress X (a constant or register expression, to be evaluated at the starting state), and a static set of load/stores inside
the code fragment (the candidate set), we define canonical register allocation as the following code transformation:

e Pick a currently unused register rX. Change the references to memory in the candidate set of load/store
instructions (L rt=..., ST rt,...) into references to the register rX (the loads and stores in the candidate
set thus becoming LR rt=rX, LR rX=rt, respectively’.)

e Load the contents of X into rX just before entering the transformed code fragment, and store it back to address
X just after exiting the transformed code fragment>.

As a concrete example, consider the C source code in Figure 1, which we will use as a running example throughout
the paper, and the corresponding original assembly code in Figure 2. Assuming that, for the sake of this example,
it was determined that X and Y will never refer to the same location, the canonical register allocation technique we
just described can change the original code in Figure 2 into that of Figure 3, by keeping the contents of address X
inside register rX throughout the code fragment. Here the candidate set of load/store instructions are marked as
“candidate” in the comments. Starting from the version of the code in Figure 3, the compiler can then perform
copy propagation (or just convert the program to SSA form and back) to eliminate all or most of the LR statements.
Hence, very efficient three-register operations can be obtained.

sub(int *X, int *Y) {

do {
if (...) { Y++5}
*X= (*X) + (*Y);
} while(...);
}

Figure 1. Original C code

Note that if Y and X do point to the same location during some iteration of the while loop, this transformation
is not correct, since the remaining load (*Y) in the loop will not see the updates to address X in memory and

LA static set of load-store instructions is just the set of instruction addresses of the loads-stores in the binary code generated by
the compiler. The instruction address uniquely defines the load/store instruction.

2Here, LR rt=rX means: copy register rX into register rt.

3Note that optimizations can later remove these initial loads and final stores, when they are not needed. If the reference to X
occurs inside a conditional statement within a code fragment, such as "if (X!=NULL) L rt=X", the initial load and final store of X, can
lead to exceptions that were not occurring the the original code. Analysis techniques to identify cases where there will be no extra
exceptions despite the speculative code motion, have been described in [6], in the context of speculative code motion out of loops.
In this paper, we will propose speculative loads and stores for accomplishing the initial load and final store of the canonical register
allocation transformation, which preserve the exception behavior of the original program. Speculative loads from a non-existent address
yield the special L value without causing an exception (similar to the L value (33rd bit) in [9] or NaT value in IA-64 [1]), and speculative
stores to a non-existent address are treated as no-ops. When the memory address is valid, the speculative loads and stores behave
as normal ones. Also LR rt=rX or LR rX=rt operations for a speculatively loaded rX, must also first check if rX is L, and cause an
exception if so. Speculative loads and stores can be used either sparingly, when the possibility of introducing extra exceptions cannot
be disproved, or all the time, the latter case for mimicking the exception behavior of the original program exactly, for all input states.
On existing machines such as the IA-64, speculative loads and stores and trapping LR’s can be emulated by macro-expansion, and
then optimized as usual, all in software. For the rest of the paper, we will assume an exception-free environment, where all memory
addresses are accessible, to simplify the formalism.



Loop: .
BC L1

A r3=r3,4 // Y++
Li: L r12=(r6) // refers to X -- candidate
L r4=(r3) // (¥Y) refers to 7
A ri12=r12,r4 // (*X)+(*Y)
ST r12,(r6) // refers to X -- candidate
BC loop
Figure 2. Initial assembly code
L rX=X // (L rX=(r6); LR r6’=r6)
Loop: ..
BC L1
A r3=r3,4
L1: LR r12=rX
L r4=(r3) // (*Y) refers to ?
A ri2=r12,r4
LR rX=ri2 // can be optimized as A rX=rX,r4
BC loop
ST rX,X // (ST rX,(x6’))

Figure 3. After allocating contents of memory location X inr egister rX

will load the incorrect, old contents of X (the updates are done only to the register rX in the transformed loop).
Also, if there is an instruction in the loop that alters the base register ré of the instructions L r12=(r6) and ST
r12, (r6), making ré point to an address different than X during some loop iterations, the transformation is again
incorrect: this is because a given register such as rX can represent (i.e., cache) the contents of only one memory
address X throughout the execution of the loop, not the contents of multiple memory addresses at the same time.
Otherwise, the transformation is correct.

The requirements for performing the canonical register allocation transformation correctly are given below.

Conditions for canonical register allocation. For any starting state, the execution of the code fragment must
satisfy the following:

1. All members of the candidate set of loads and stores must refer only to X, and

2. No load or store outside of the candidate set (but inside the code fragment) must ever refer to X

These two conditions are in fact necessary and sufficient conditions for correct canonical register allocation,
when one does not consider register allocation optimizations that rely on any special property of a code fragment
(a property that is not shared by all code fragments)?. In the appendix, we provide a proof of the necessity and
sufficiency of these conditions.

In order to link these conditions to the terminology of fundamental impediments described in the abstract, we
can say that violations of condition (1) correspond to the “dynamically varying load/store operand addresses” and
that the violations of condition (2) correspond to the “inherent limitations of the compile time alias analysis.”

Scalar variables of a procedure allocated on the stack (automatic variables), whose address is not taken, triv-
ially satisfy conditions (1) and (2), and this method could be used for traditional register allocation as done by
compilers (which can of course be done by many other, more direct methods). Also, when the compiler can
prove these two conditions for a set of loads/stores by sophisticated interprocedural alias analysis, e.g. as in
[7], many other kinds of variables (e.g., on the heap or in the static external variables area), can be allocated
in registers as well. Note that the scope of the code fragment will in general be changed while making register

4We are not considering some special case optimizations that do not apply to all code fragments, such as (1) letting a load outside
of the candidate set refer to X during the code fragment, when X is read-only throughout the code fragment, or (2) allowing a member
of the candidate set to refer to two distinct addresses X and Z when addresses X and Z have equal contents.



allocation decisions for a procedure body. For example, register allocation of an array element A[i] in an inner
loop for(i=1..N){...A[i]l...A[i]...A[i]l} can be achieved by considering only the for loop body as the code
fragment, while the entire procedure body can be used as the code fragment for register allocation of an automatic
scalar variable, whose address is not taken.

When condition (1) is guaranteed, since, e.g., each member of the candidate set uses the same base register that
is unchanged throughout the code fragment, condition (2) can be relaxed by using hardware techniques such as
CRegs|2] or the IA-64 ALAT [1] mechanism. These techniques tolerate references to X from outside the candidate
set of loads and stores, if these references are infrequent, and can therefore perform speculative register promotion
of the candidate set, in the presence of pointers which cause static alias analysis to fail.

To date, we are not aware of any register allocation method that is able to overcome both of the conditions (1)
and (2) simultaneously. The present paper aims to propose novel hardware and software techniques to overcome
both of the conditions (1) and (2).

In section 2, we introduce a new dynamic view of the register allocation problem by defining a “limit register
allocation” machine, as a new theoretical tool for gaining insight into register allocation. This machine is able to
rewrite register fields of the binary program at run-time, and force both of the conditions (1) and (2) to become true
as a result of the binary rewriting, as soon as they cease to be true as a result of dynamically changing operand
addresses in loads/stores, or inherent limitations of static alias analysis. For example, when a load instruction
that was referring to Y suddenly starts referring to X, the corresponding LR rt=rY instruction in the transformed
program (where all loads and stores have been converted to LR operations) suddenly starts using register rX
(containing the memory operand at address X) instead of register rY (containing the memory operand at address
Y), by binary rewriting. Inspired from this ideal machine, we then propose a new software emulation technique and
a new hardware technique for aggressive register allocation: Section 3 describes the software emulation technique
and section 4 describes the hardware technique. Section 5 discusses the related work, and section 6 concludes the
paper. The appendix provides a proof that conditions (1) and (2) are both necessary and sufficient, with the given
assumptions.

2 The limit register allocation machine

Having defined the two necessary and sufficient conditions for register allocation, we now define a limit register
allocation machine that continually tracks the program and exploits all register allocation opportunities.

We first change each original load (L) and store (ST) in the program to new instructions L*, ST*, that also
contain a new register number field called ncr (a Named Cache Register), indicating an entry in a new Named
Cache Register (NCR) file we are introducing to the architecture, as shown in Figure 4.

Original load/stores:
L rt=(rb) //R[I.rt]=M[R[I.rb]] --I:instruction, R:registers, M: memory
ST rt,(rb) //M[R[I.rb]l]=R[I.rt]

==>
New instructions:
L* rt,(rb),ncr //R[I.rt]=NCR[I.ncr].data, if (R[I.rb]==NCR[ncr].addr)
ST* rt, (rb),ncr //NCR[I.ncr].data=R[I.rt], if (R[I.rb]==NCR[ncr].addr)

//NCR: Named Cache Register file

Figure 4. Transformation of L, STinstructionsto L, ST*.

The precise semantics of L*, ST* are shown in the pseudo-code in Figure 5.

Here we are adding to the architecture a new register file structure NCR - or Named Cache Register file - each of
whose entries have the three fields: data, address, and dirty bit. For now, assume that all that memory accesses
are of word size®. The NCR is a collection of single-entry direct-mapped caches, that one can refer to by name
(ncr field) in an instruction (hence the name Named Cache Register). When the access to the single-entry direct-
mapped cache named by the ncr field causes a “cache miss,” then entries in NCR need to searched by address,

5Partword memory accesses, overlapping operands, and different virtual addresses aliasing to the same memory location, are
implementation issues that can be added to the basic NCR mechanism. We will not clutter the current presentation with them.



Limit machine instruction execution loop:
switch(I) { //I is the next instruction to execute
case L* rt,(rb),ncr :
if (R[I.rb]!=NCR[I.ncr].addr) {I.ncr=accessNCR(false,R[I.rb]l);}
// here R[I.rb]==NCR[I.ncr].addr
R[I.rt]=NCR[I.ncr].data; ...; break;
case ST* rt,(rb),ncr :
if (R[I.rb]!'=NCR[I.ncr].addr) {I.ncr=accessNCR(true,R[I.rb])}
// here R[I.rb]==NCR[I.ncr].addr
NCR[I.ncr].data = R[I.rt]; NCR[I.ncr].dirty=true; ...; break;
default: <execute instruction as usual>; }

registerNumber accessNCR(boolean isWrite, address y) {
//return an ncr representing the contents of the memory address y
if ((Exists registerNumber ry) (NCR[ry].addr==y)) {return ry;}
registerNumber ry=chooseEvictable(NCR); // find an ncr to evict
if (NCR[ryl.dirty) MINCR[ryl.addr]=NCR[ry].data; // write back if dirty
if (lisWrite) NCR[ry].data=M[yl; //if a load, read initial value
NCR[ry] .addr=y; NCR[ry].dirty=false;
return ry; }

Initialization:{for(I: all L*,ST*) I.ncr=rNULL;}
//NCR[rNULL] .addr does not match any real load/store address

Wrap-up: for(i:0..NCR’last){if (NCR[i].dirty) M[NCR[i].addr]=NCR[i].data;}

Figure 5. Semantics of the limit register allocation machin e with Lx,ST*

similar to an associative cache (the associativity is an implementation issue which also depends on the replacement
policy). Omne observation we could make is that, when there is a hit in the single-entry direct mapped cache
named by the ncr field, i.e. NCR[I.ncr].addr==R[I.rb], the instruction L* rt, (rb) ,ncr performs a register
copy R[I.rt]=NCR[I.ncr].data, which we can abbreviate as LR rt=ncr, and the instruction ST* rt, (rb) ,ncr
performs a register copy NCR[I.ncr].data=R[I.rt], which we can abbreviate as LR ncr=rt.

Optionally, for the purpose of having a single uniform register file (more suitable for additional optimizations
such as copy propagation) one could map the normal general registers R into a portion of the NCR register file
structure, such that R[i]==NCR[i] .data, i=0..31, and where L* and ST* instructions use ncr numbers greater
than or equal to 32 (assuming there are 32 general purpose registers).

The semantics given in Figure 5 is perhaps best explained by an example, namely our running example in
Figure 1. The limit register allocation machine will first initialize all L*, ST* ncr fields to rNULL. Let X0, YO be
the initial values of pointer variables X, Y, respectively, before the while loop is entered. Suppose initially the
memory address YO points to the word just before X0. L.e., assume X0==Y0+1 in terms of C address arithmetic.
Assume that during the first two iterations of the while loop, Y stays the same (equal to Y0), but in the third
iteration, Y gets incremented in the instruction A r3=r3,4, thus becoming equal to XO.

During iteration 1, assume that ncr number rX is chosen to represent the memory location X0 by the accessNCR
routine, when the first L* instruction (I1) is executed. Also assume that rY is the ncr number that is chosen to
represent memory address YO, during the execution of the second L* (I2). The store instruction (I3) (which also
refers to X0) will discover that ncr number rX already represents address X0 and will start using rX as its ncr. The
state of the binary program and the contents of the NCR register file entry numbers rX and rY are shown in Figure
6, after iteration 1.

Iteration 2 gets executed uneventfully, where the ncr entries rX and rY are re-used by the L*, ST instructions
11,12,13, without going to memory. (NCR[rX].data is updated by the ST* instruction I3). But in iteration 3, a
change occurs as shown in Figure 7. Since the base register r3 of original second load instruction (I12) has been
incremented (becoming X0 instead of Y0), and since the instructions I1, I3 have already started referencing X0 and
(*X0) is already in an NCR register rX, i.e., (NCR[rX].data==(*X0)), the L* instruction 12 is rewritten to refer
to rX instead of rY. As long as base register of the second load 12 does not change again, the iterations can keep
accessing registers only, without needing to go to memory.

When the program (while loop in this case) finishes, NCR[rX] .data is written into the corresponding address



Loop: .
BC L1

A r3=r3,4
L1:(I1) L=x r12, (r6) ,rX (LR ri12=rX) //NCR[rX].data=(*X0),NCR[rX].addr=(X0)
(I2) Lx* r4,(r3),rY (LR r4=rY) //NCR[rY].data=(*Y0),NCR[ry].addr=(Y0)
A ri12=ri12,r4 //optimize as A rX=rX,rY
(I3) ST* r12, (r6) ,rX (LR rX=ri12) //NCR[rX].data=R[r12]
BC loop
Figure 6. Dynamic snapshot of code after iteration 1
loop: ..
BC L1
A r3=r3,4
L1:(I1) Lx* r12,(r6) ,rX (LR ri2=rX)
(I2) Lx* r4, (r3),rX (LR r4=rX) //NCR[rX].data=(*X0), NCR[rX].addr=(X0)
A ri2=ri12,r4 //optimize as A rX=rX,rX
(I3) ST* r12, (r6) ,rX (LR rX=r12)//NCR[rX].data=R[r12]
BC loop

Figure 7. Dynamic snapshot of code after iteration 3

NCR[rX] .addr since it has been overwritten (dirty). Notice that the limit machine has successfully done register
allocation in our difficult code example (which is not register allocatable via existing techniques), using binary
rewriting.

2.1 How thelimit register allocator always meetsthe two conditions

It is interesting to discuss the relationship between the limit register allocator machine, and the two conditions
described in the introduction. At a given point in the execution trace, for a memory address X, let C(X) be the
set of static load and store instructions defined as {IINCR[I.ncr].addr==X}. These instructions are the static
loads and stores in the program whose last executions in the execution trace referred to the address X. For a given
memory address X, let {to, 1, ...,%;} be the set of points (dynamic instruction sequence numbers) in the execution
trace, where a change occurs to C(X). Note that during any trace fragment starting at instruction sequence number
t; in the trace and ending just before instruction sequence number ¢;,;, where C(X) does not change, (1) all loads
stores in the program that refer to X (the members of C(X)), refer only to X, and (2) no loads stores outside of C(X)
refer to X. When these conditions are violated by the instruction with sequence number ¢;4; (e.g. an instruction
that was referring to X starts referring to Y, or an instruction that was referring to Y starts referring to X), the limit
machine rewrites the binary program (e.g., by changing the ncr rX to rY, or rY to rX in the offending instruction),
to make the conditions (1) and (2) true again, for the next trace fragment, ¢;11 to ¢;y2. Hence for any given address
X, the “limit register allocation” machine in fact continuously forces the conditions (1) and (2) (mentioned in the
introduction) to be true, by dynamic binary rewriting. Thus, the limit machine exploits all register allocation
opportunities for X in the execution trace.

2.2 Theopportunity for register allocation

Based on a simulation of the limit register allocator machine on sampled PowerPC traces coming from 11
SPECInt2000 benchmarks®, the opportunity for promoting loads/stores to register accesses (precisely, the percent-
age of dynamic L*/ST* where NCR[I.ncr].addr==R[I.rb] was immediately true at the beginning of instruction
execution, i.e., where the load/store operand was found immediately in the ncr entry named in the instruction) is
between 15% and 90%, as shown in Figure 8. Figure 9 shows results with a finite number of NCR entries. Again, the
same metric is reported (percentage of dynamic L*/ST* where there was an immediate hit in the ncr entry named

6The “parser” trace was not available to us at this time
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in the instruction). But the percentages are lower than the infinite NCR case, since even if a load or store uses the
same address that it used during its last execution, its ncr entry may have been evicted from the NCR since the last
execution of this load/store, because of the small size of the NCR. The results show that 2048 registers with LRU
replacement are almost as good as an infinite number of registers, for this particular metric. The Belady OPT
replacement approach interestingly does very well, even with 128 registers.

3 Software emulation of the limit machine

Here we will describe a compilation technique that will, in principle, simply emulate the limit register allocation
machine algorithm by replacing each load/store by the macro expansion of L*,ST* defined by the algorithm of
Figure 5, and then optimizing the resulting code using first principles.

The data and address fields of each NCR entry can be represented as discrete symbolic registers to the compiler.
Firstly, there is no advantage in simulating the actual writing of the ncr field of an instruction, and performing
an address comparison first to the instruction’s ncr field. Instead, in the macro expansion of a load or store
operation, the memory address must be compared with the address field of all applicable NCR entries, starting from
the entries that are more likely to match (perhaps based on profiling feedback). If there is a match, the data field
of the matching NCR entry (another symbolic register) can be read or written. When no address match is found
among the applicable NCR entries, the macro expansion code needs to access memory and simulate the eviction
of an existing NCR entry. It is better to choose an NCR entry to evict, which is known at compile time, and avoid
replacement policies that find such entries dynamically: This approach will cut down on the number of NCR entries
to compare against, later. A dirty bit is not needed among the fields of the NCR entries, since the compiler will
know which NCR entries may have been modified at a given point. Also, it makes sense to do the optimization in
modest sized code fragments where the applicable NCR entries are initialized at the beginning of the code fragment,
and are then flushed back to memory at the end, if overwritten.

To make the compilation result practical, the number of address comparisons should be minimized. We assign
a unique “home ner” to each group of loads/stores, where the operand address is equal within the group, but may
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differ among the groups (the distinct symbolic address expressions normally derived by an ILP compiler for each
load/store for alias analysis can be used for representing each distinct group). When all applicable ncr comparisons
fail and the L*,ST* emulation has to go out to memory, the home ncr will be chosen for eviction. A base register of
a given load/store should be compared only with the home ncr’s of loads/stores which (1) may have preceded this
one on some execution path (2) may be aliased with this one. If there is an address expression which is definitely
equal to the current load/store address, and its home ncr is known to be assigned by now, no further address
comparison is needed; the data is already available in that ncr.

The general approach to compilation, is to start with a small number of comparisons for a load or store, and
gradually apply optimizations that reduce the address comparisons until (hopefully) there are none. The following
optimizations are among those that are useful:

Advanced static alias analysis. This cuts down the address comparisons.

Assertion propagation to aid detection of redundancies. E.g., propagating assertion (x==y) in the context of
x=y;...; or if (x==y) {...}. These are important for deducing that an address comparison is redundant.

Loop peeling to expose redundant or loop invariant computations. Often an assertion such as (x==y) that
would enable us to remove an address comparison, is true inside a loop but not on the incoming edges to the
loop. The loop can then be peeled just enough to make the assertion true on the incoming edges (without
exceeding a code size budget). This can be done on “loops” with multiple entries as well.

Moving loop invariant conditional branches out of loops. if a test such as (x==y) is loop invariant, it can be
moved out of the loop by creating two copies of the loop, one which behaves as if (x==y) and another which
behaves as if (x!=y), and selecting the right loop version to enter at run time, based on the comparison
(x==y). The “loop” can have multiple entries. This optimization also helps with the removal of redundant
address comparisons.

Limited tail duplication on time-critical code fragments. Similarly, an assertion that would allow an opti-
mization such as removing an address comparison or copy operation may be true on some incoming edges



but not all. In that case, it makes sense to do just enough tail duplication to make the assertion true on all
incoming edges (so that the redundant operation can be eliminated in at least one copy of the code). One
can even tail-duplicate cyclic code by treating the cyclic code as an atomic basic block, all subject to the
code size budget.

e Partial redundancy elimination.

e Copy propagation/elimination. Constant propagation.

In this section we will apply the compilation procedure suggested here to the same running example, described
in Figure 1. Notice that while existing compiler techniques cannot register allocate this example, our technique
can, with the resulting code behaving just like the limit register allocator machine.

3.1 Initial code

Figure 10 describes the initial assembly version of the program, with just the above-mentioned optimizations
involving “home ncrs” to cut down on the number of address comparisons, and assertion propagation/copy elimi-
nation/PRE.

rY.addr=NULL; rX.addr=NULL; //initalize the NCR entries to be used

Loop: ...

BC L1

A r3=r3,4

L1: // L r12=(r6) home ncr=rX

If (r6==rX.addr) {} else {rX.data=LOAD(r6); rX.addr=r6;}

// (rX.addr==r6) is true here but not at the loop entry--peeling will help

// L r4=(r3) home ncr=rY

If (r3==rY.addr) {r4=rY.data;} else if (r3==rX.addr) {r4=rX.data;} else { r4=rY.data=LOAD(r3); rY.addr=r3;}
A rX.data=rX.data,r4 //copy prop of LR ri2=rX.data;A r12=ri12,r4; LR rX.data=r12
// ST r12,(r6) home ncr=rX (code eliminated through copy elim.)

BC Loop
// at the end of a procedure simulate flushing all the dirty NCR entries
STORE(rX.addr,rX.data)

Figure 10. Initial Code

3.2 Applying optimizations

Figure 11 describes the effects of loop peeling, which makes (r6==rX.addr) true throughout the loop, and hence
eliminates the (r6==rX.addr) comparison.

Figure 12 isolates the frequently executed cycle of the inner loop where the conditional (r3==rX.addr) is loop
invariant. Figure 13 shows the result of moving the invariant condition out of the loop.

In Loopy the load may be executed only on the first iteration, and subsequently the data in rY.data will be
used (since (r3==rY.addr) will be true). To expose this redundancy, loop peeling is appropriate as in Figure 14.
Also, additional copy propagation has been done in Figure 14.

After this point, code would be copied from branch targets, to reduce the number of branches being executed.

The aggressive software emulation technique described here, will rely on a cost-performance analysis (based
on profiling feedback), and will focus on optimizing the most frequently executed parts of the code, until various
budgets are exceeded. Address comparisons created by this technique can be implemented through Huffman-
encoded trees that check the most frequently matching addresses first, or with predicated execution features on
ILP machines.



rY.addr=NULL; /*rX.addr=NULL;*/... //rX.addr=NULL dead

BC Lila // peeled partial body of loop

ADD r3=r3,4

//r6==rX.addr false before this statement and true after it
Lia: /*if(r6==rX.addr){} elsex/ {rX.data=LOAD(r6); rX.addr=r6;}
B peelentry0

Loop: ...
BC L1
A r3=r3,4
L1: /*if(r6==rX.addr){} else{...}*/ //r6==rX.addr true here, rX definitely assigned
peelentry0:
if (r3==rY.addr) {r4=rY.data;} else if (r3==rX.addr) {r4=rX.data;}
else {r4=rY.data=L0OAD(r3); rY.addr=r3;}
A rX.data=rX.data,r4 // copy prop. of ri2=rX.data;A ri12=ri12,r4;rX.data=r12;

BC Loop
Exit:
STORE (rX.addr,rX.data)

Figure 11. Loop peeling makes (r6==rX.addr) true inside loop-eliminates address comparison.

Loop: ...

BCnot L2

L1:

If (r3==rY.addr) {r4=rY.data;} else if (r3==rX.addr) {r4=rX.data;} else {r4=rY.data=LOAD(r3); rY.addr=r3;}
A rX.data=rX.data,r4

BC Loop
B exit

L2:

A r3=r3,4
peelentryO:
B L1

Figure 12. Isolating the part of the loop where (r3==rX.addr) is invariant

4 Runtime register allocation using hardware

This section outlines a proposal to do register allocation in hardware at runtime. We observe that the operation
of the limit machine from Section 2, is very similar to an associative cache structure, when the data is not found
immediately in the entry directly given by the ncr field. This leads us to propose a level-1 data cache structure
that can also be accessed as a register file. The advantages of this approach are as follows: (1) The register
replacement policy and cache replacement policy are unified into one piece of hardware (thus benefitting from
state-of-the-art cache organizations), and (2) When some loads/stores do use ncr’s while some others use a plain
L1 data cache, coherence between the two conceptually separate memory hierarchies is automatically achieved.
Ordinary loads/stores can thus be mixed with loads/stores that try to make use of an ncr.

In our new hardware approach, which attempts to mimic the limit machine described in the introduction, which
dynamically rewrites its own register fields, all L/ST instructions are extended with a Predicted Register Number
(PRN) field

The PRN field has three subfields: <set number, way number within set, offset within line> which sup-
ply the information needed to directly locate a load/store operand inside a traditional set-associative cache.

First, the PRN is sent to the D-L1 cache. The access is speculatively completed quickly, as if the D-L1 were a
register file, and subsequent operations that may depend on the load data are also started speculatively, as soon
as possible.

Then the normal address is also sent to the cache, after the normal register access and TLB delays have elapsed,
and the speculative access is checked for correctness.
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Loopx: ... // this loop behaves as if (r3==rX.addr) were true

BCnot L2

Lix:

r4=rX.data; //(r3==rY.addr) is false since r3==rX.addr is true and ncr’s have distinct addresses
A rX.data=rX.data,r4d

BC Loopx
B exit

Loopy: ... // this loop behaves as if (r3==rX.addr) were false

BCnot L2

Liy:

if (r3==rY.addr) {r4=rY.data;} else {r4=rY.data=LOAD(r3); rY.addr=r3;}

// (r3==rY.addr) true inside loop but not on entry-- loop peeling will help
A rX.data=rX.data,r4

BC Loopy
B exit

L2:

A r3=r3,4

peelentryO:

//select correct loop to enter

if (r3==rX.addr) {goto Lix;} else {goto Liy;}

Figure 13. Moving the invariant condition (r3==rX.addr) out of the loop

If the L./ST operand is already in the cache array location denoted by PRN, (Le. the cache line indicated by the
set number and way number within set subfields of the PRN has a valid tag, which equals the upper bits of the
real operand address of the L/ST, and the offset within line subfield of the PRN was equal to the offset within line
subfield of the L/ST address), then there is nothing to be done, the access was correct.

Otherwise, first, the speculatively started operations that may depend on the L/ST are squashed. The set
associative D-L1 cache is accessed as usual, using the load/store real address. If there is a cache miss, the lower
level cache(s) are accessed as usual, and an existing line in D-L1 is evicted for replacement (casting it out to L2 if
it was dirty /overwritten).

The choice of the line to be evicted can vary, according to the replacement policy.

The load/store instruction is then completed with the correct operand in the D-L1 cache. Also, the correct
current location of the load/store operand is written into the PRN field of the Load/Store instruction that caused
the register number misprediction.

There are two special invalid values of the PRN field, which force register number mispredictions

Non-sticky invalid value: All load/stores are initialized to use the non-sticky invalid value when a program is
first loaded in memory. When the load/store first executes, it will mispredict. The current location of the operand
is then written into the PRN field of the load/store.

Sticky invalid value: This PRN value also forces mispredictions, but cannot be overwritten. So the load/store
will behave like an ordinary load/store that does not use the PRN prediction mechanism. Software or hardware
algorithms could identify suitable loads that mispredict often. Such loads could be scheduled by a compiler in
a in-order issue machine or by the hardware in an out-of-order issue mechanism, by using a longer load-to-use
latency.

5 Related Work

The TA-64 ALAT mechanism [1], while originally designed for scheduling speculative loads for instruction level
parallelism, can also be used for register promotion of load instructions in the presence of pointer stores. As long
as the probability of overlap is very low, load instructions can be speculatively promoted to registers. CRegs [2] is
another mechanism designed specifically for register promotion in the presence of pointer accesses. Transmeta has
also described a similar technique. However, these techniques all attempt to overcome requirement (2) described
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Loopx: ... // this loop behaves as if (r3==rX.addr) were true

BCnot L2

Lix:

/*rd4=rX.data;*/ //(r3==rY.addr) is false since r3==rX.addr is true and ncr’s have distinct addresses
A rX.data=rX.data,rX.data;//copy prop. of ré4=rX.data;A rX.data=rX.data,r4

BC Loopx
B exit

L1y’: // peeled partial body of Loopy

if (r3==rY.addr) {/*r4=rY.data;*/} else {/*rd4=+/rY.data=L0OAD(r3); rY.addr=r3;}
// here rY.addr==r3

B peelentryl;

Loopy: ... // this loop behaves as if (r3==rX.addr) were false

BCnot L2

/*r4=rY.data;*/ // since r3==rY.addr

peelentryl:

A rX.data=rX.data,rY.data//copy prop. of r4=rY.data;A rX.data=rX.data,r4

BC Loopy
B exit

L2:

A r3=r3,4

peelentryO:

//select correct loop to enter

if (r3==rX.addr) {goto Lix;} else {goto L1ly’;}

Figure 14. Peeling Loopy to expose redundancy, copy propagation of rd

in the introduction (difficulty of alias analysis at compile time), and not requirement (1) (Dynamically varying
load/store operand addresses). To our knowledge this paper’s method is the first one to provide a solution for
overcoming both (1) and (2). Also for the case of overlapping pointers, our method does not show performance
degradation, whereas approaches such as the TA-64 ALAT mechanism suffer significant performance loss.

The ner fields in the limit register allocation engine described in Figure 5 is similar to way-prediction in as-
sociative caches. However, in our case, way prediction information is stored as part of the instruction (the ncr
field), not per cache set, as in the typical “MRU” policies for way prediction [8]. Also, because the NCR register file
is accessed as soon as an instruction is available, a shorter pipeline can be achieved compared to the traditional
load/store pipeline. The shorter pipeline can lead to smaller branch misprediction penalties.

6 Conclusions

In this paper, we have analyzed the two fundamental impediments a compiler faces (aliasing, and dynamically
varying load/store addresses) when making a register allocation decision, and have designed an ideal “limit register
allocator machine,” as a theoretical tool to gain insight into the essence of the register allocation problem, and to
address both of the fundamental impediments. We have also proposed:

(1) A software emulation method for the limit machine. This leads to successful register allocation of code
fragments that could not be handled by other means before.

(2) A hardware implementation of concepts from the limit machine, by adding a dynamically changing operand
location prediction field (“Predicted Register Number”) to each load/store instruction, which improves the perfor-
mance of data L1 caches by speculatively accessing the predicted operand location in the D-L1 cache array directly
(as if it were a “register file”).

Based on the observations in this paper, we can see an interesting continuum of “cache-like” register file struc-
tures, ranging from ordinary register files, our proposed technique, and CRegs/ALAT approaches.

Further experimental results will be provided in the final version of this paper. Here are also some further
(speculative) variations on the ideas, some of which will be part of future work related to the present paper:
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e Using more than one ncr field per instruction, to increase chances of a match.
e Hiding the details from an existing ISA, by keeping the PRN field only the icache hierarchy and not in memory.

e Using PRN’s pervasively at all levels of the memory hierarchy, as general purpose location prediction bits, as
a way to speed up any cache or memory access.

e Anticipating ncr changes ahead of time (using both simple and sophisticated prediction mechanisms) and
prefetching the desired data into the next ncr to be used by an instruction. Doing the ncr field binary
rewriting ahead of time.

e Merging N ncr registers that represent N different addresses into one physical ncr, when the contents of the
addresses are equal.

e Organizing the NCR with long lines. Packing words from noncontiguous but related operands contiguously,
in a single long line of the NCR.
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Appendix: Necessity and sufficiency of conditions (1) and (2)

Definition. A state is a mapping from memory addresses and machine registers to bit-string values.
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Definition. A code transformation is correct, if for all starting states: (a) the transformed code terminates if and
only if the original code terminates, and (b) when it terminates, the transformed code produces the same final state
as the original code (except possibly for “dead” memory addresses and registers in the final state, whose values will
never be referenced before being overwritten, and hence do not matter).

Theorem. Assume that register allocation optimizations that take advantage of any special property of a given
code fragment (that is not shared by all code fragments) are not to be considered’. Then, given a single-entry code
fragment, a candidate set of load/store instructions in the code fragment, and a memory address X (a register or
constant expression, to be evaluated in the starting state), the canonical register allocation of memory address X as
defined in the Introduction will be a correct code transformation, if and only if, for every starting state, both of the
conditions (1) and (2) (defined in the Introduction) hold during the execution of the code fragment.

Proof. Sufficiency: Suppose that for all starting states, both (1) and (2) hold during execution. Then the trans-
formed version of the code after the canonical register allocation, clearly yields intermediate states identical to
the original code after each instruction execution, except that all references to memory address X are replaced by
references to register rX, which always has the same value as the contents of memory address X in the original
code. If the original code fragment does not terminate for this starting state, neither does the transformed version.
Otherwise, rX is stored back into X at the end of the code fragment in the transformed version, hence, the final
state of the general registers and memory in the original and transformed code are identical. The only potentially
different register in the transformed code, rX, is dead at the final state. Hence, the transformation is correct.

Necessity: Assume the contrary. Suppose we have performed canonical register allocation for a candidate set
and memory address X, and the code transformation is correct, but there is a starting state which leads to an
execution which violates either (1) or (2).

If condition (1) does not hold, a member of the candidate set is referring to a different address Y instead of
X during execution. This will still yield a correct final result only if (a) X and Y have equal contents, or if (b)
the incorrect intermediate state in the transformed program, still leads to the same final result as in the original
program (or the same non-terminating behavior as in the original program). But, this means that the optimization
has relied on a special property of the given code fragment (a property that is not shared by all code fragments).
Contradiction.

If condition (2) does not hold, then a load or store instruction outside of the candidate set but inside the code
fragment refers to X during execution. Then, either (a) the contents of memory address X and the value of register
rX are identical at the instant after executing the offending load or store, or (b) the incorrect intermediate state in
the transformed program, still leads to the same final result as in the original program (or the same non-terminating
behavior as in the original program). But this means the optimization has relied on a special property of the code
fragment (a property that is not shared by all code fragments). Contradiction. O
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