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ABSTRACT
This paper describes ongoing research on building software to be
comprehensible to its users so that they can tailor it to their needs
in the field. Our test-bed is a computing stack called Mu that deem-
phasizes a clean interface in favor of a few global implementation
properties: small implementation size, few distinct notations, par-
simonious dependencies, a simple dependency graph that avoids
cycles, and early warning on breaking changes. Assuming a 32-bit
x86 processor and (for now) a basic third-party Unix-like kernel,
Mu builds up from raw machine code to a memory-safe but less
expressive language than C.

Our approach to keeping software comprehensible is to reduce
information hiding and abstraction, and instead encourage curiosity
about internals. Our hypothesis is that abstractions help insiders
who understand a project but hinder newcomers who understand
only that project’s domain. Where recent efforts to create “bicycles
for the mind” have tended to focus on reducing learning time and
effort, we explore organizing the curriculum to be incrementally
useful, providing an hour of actionable value for an hour (or three)
of study. The hope is that rewarding curiosity will stimulate curios-
ity in a virtuous cycle, so that more people are motivated to study
and reflect on the difference between good vs bad design and good
vs bad architecture, even as the study takes place over a lifetime
of specialization in other domains. Spreading expertise in design
is essential to the creation of a better society of more empowered
citizens. Software tools have a role to play in this process, both by
exemplifying good design and by providing visceral illustrations of
the consequences of design choices.

CCS CONCEPTS
•Human-centered computing→Open source software; • Soft-
ware and its engineering→ Layered systems.
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1 INTRODUCTION
In order for code to be living structure, even the tools used to
make the code need to be living structure.

Christopher Alexander

In “Tools for conviviality” [12], Ivan Illich describes two schools of
tool-making, the means by which humans influence their environ-
ment. Manipulative tools focus on immediate productivity. They
use what’s easily available and convenient to use, and build on it.
Little attention is given to the process by which tools are created,
leading to deep dependency chains of tools that need other tools
to be built. Over time, special interests capture the apparatus of
tool-making and management. Flaws in specific tools are papered
over with more tools. What used to be considered the means toward
some other end gradually turn into ends in themselves, their pro-
duction and nurturing requiring increasing quantities of manpower,
from people not motivated to work on this endeavor and therefore
needing increasing amounts of management.

In response, Illich proposes an alternative school he calls con-
vivial tools. According to him, the primary goal when making a
tool shouldn’t be to just make some tactical activity more conve-
nient. Instead, it should be to preserve the degrees of freedom of
individuals as we explore alternative combinations of human and
machine. Individuals should decide for themselves the uses to put
their own manpower to. We should celebrate tools that preserve
individual agency, and shun tools that reduce human agency. Con-
cretely, if a tool doesn’t do quite what you need, don’t try to paper
over its deficiencies with a second tool. The maintenance burden
of both will lead to compounding claims on your time, and on the
time of others, thereby reducing the degrees of freedom of human
society as a whole. Instead, take the first tool out, and think about
the problem anew.

Taking tools out of existing workflows is difficult. Our social
arrangements incline us to take artifacts for granted once they’ve
been introduced (and experience some level of adoption). People
accultured in our society tend to expect a level of specialization,
with problems partitioned according to fairly static boundaries.
Most people’s careers are circumscribed by these boundaries. If
we grow used to something that we don’t know how to build or
manage, the prospect of losing it is painful.

If we stipulate that Illich’s goal is desirable, the problem then
becomes how to encourage greater dissemination of knowledge
about tools. How do we build tools that can be maintained by end
users in the field, without support from authors and experts? The
Mu project explores one approach to this problem in the domain
of software: to support modification in the field, keep everything
simple enough to be comprehensible by anyone, without exception.
Mu is a computing stack designed from the ground up:

• to have a strict complexity budget, to “fit in a single brain”;
• to not grow complex over time; and
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• to reward curiosity, and encourage people to understand its
internals.

These goals stem from three major influences. In chasing large-
scale comprehension without access to original authors, we try to
follow the dictums of Peter Naur [19] and add detail to them. In em-
phasizing degrees of freedom for end users, we follow Christopher
Alexander [1], particularly as recounted by Richard Gabriel [6].
In deemphasizing black boxes, we follow the observations of Gre-
gor Kiczales [16] and the dialectic between his criticisms and the
lessons of Parnas [20] and others.

This paper reports on progress towards these goals. Our hypoth-
esis is that using fewer abstractions—carefully designed to leak
in just the right ways—can make the maintenance task more ap-
proachable to end users. Since dependencies introduce their own ab-
stractions, we minimize external dependencies. In particular, since
most mainstream software prioritizes use as a black box rather than
comprehension of internals, we try to minimize dependencies on
mainstream software.

We don’t have a definitive conclusion yet on the efficacy of this
approach. If we fail to falsify our hypothesis, we’d like for Mu
to demonstrate an alternative way for people to collaborate over
software: by exchanging complete working stacks (all software
running on a computer, with the possible exception of firmware)
designed to be manually merged for individual contexts. We hope
taking control of the developer experience in this manner will lead
to more comprehensible software infrastructure.

1.1 Strategies
Mu aims to accomplish these goals using the following strategies:

(1) It almost unfailingly implements high-level constructs out of
lower-level ones. Dependencies flow ‘down’, and we avoid
cycles in the dependency graph as far as possible.

(2) It uses as little mainstream code (interface-driven, built with
whatever’s handy, indirectly depending on C) as possible.

(3) It uses as few notations (languages, syntaxes, intermediate
representations) as possible.

(4) It prioritizes safety over syntactic convenience.
(5) It focuses on encoding intention. The ideal: if making a

change raises no errors, then no regressions should have
occurred. If an error is raised, it should be obvious to an end-
user that the expected behavior is superior to the erroneous
behavior.

(6) It encourages users to fork it, both technically and socially.
Here’s how these strategies support Mu’s goals:

• Minimizing dependencies reduces the number of moving
parts and therefore the total cognitive load of the stack. Keep-
ing dependencies decomplected [10] also aids comprehension.
When learning a strange new codebase by oneself, metacir-
cular implementations are hard to understand; they can seem
like circular reasoning.

• Mainstream software isn’t as disciplined about avoiding or
topologically sorting dependencies. Using it violates the pre-
vious rationale.

• Mainstream software is usually designed to hide implemen-
tation details behind an interface, which goes against our
plan to expose implementation details but keep them simple.

• Any mainstream software we introduce is a source of noise
when we try to falsify our hypothesis. We’d like to be con-
fident in a negative result rather than wonder if, say, the C
compiler we used hindered full-stack comprehension.

• All notations may need at some point to be learned by an
end-user, so it seems worth restricting their numbers. While
notation is a tool of thought [13], many different notations
can be a hindrance to thought.

• Deemphasizing syntax reduces implementation size at the
lower levels of the stack.

• Deemphasizing syntax causes source code to be closer to
generated code, and the programmer’s mental model to be
closer to the machine. The programmer is habituated to
communicate precise intent (and discover it in the process)
rather than expect the machine to make (inevitably fallible)
assumptions.

• Reified intention (using types and tests) provides early warn-
ing of breakage when the system is modified by outsiders;
outsiders can’t be expected to have the context of the project’s
development history or capabilities for thorough manual
testing.

• Forks provide an escape hatch for sub-communities of end-
users to bud off as their needs diverge, deleting features
they don’t use to compensate for new features they do need.
Tests can help divergent sub-communities continue to share
features with a bounded amount of effort.

1.2 Prior Approaches
These strategies borrow from much past work. For example, Forth
systems [3, 21] emphasize parsimonious dependencies (Strategies 1
and 2 above) but give up on safety (Strategy 4) in the process.
Smalltalk systems [7] emphasize safety (like many other high-level
languages) while exposing a large fraction of their internals. How-
ever, there usually remains a kernel that requires exiting Smalltalk
to modify. Lisp Machines [8] built up all the way from custom hard-
ware (Strategy 1) while remaining safe. Lisp, Forth and Smalltalk
all emphasize uniform notation (Strategy 3), though they also have
strong and divergent opinions on what that notation should be.
While they all expose their internals to modification in various
structured ways, it seems easy for small modifications to their inter-
nals to cause regressions both subtle and catastrophic. Modification
requires expertise of all the scenarios their environments are de-
signed to handle, expertise that can only be obtained out of band
from the tools themselves.

The STEPS project [15] explored ways to construct a complete
stack with low implementation effort. Mu tries to follow in its spirit,
while being more parsimonious with dependencies and notations.
Thework of Basman and Tchernavskij [2] describes amature society
based on forking (Strategy 6) that we aim towards.

2 AN AUSTERE STACK
As mentioned above, Mu is parsimonious with its dependencies. At
run time, Mu packages programs either as ELF binaries running on
Linux or as bootable disk images bundled with a third-party Unix-
like kernel. Mu programs don’t rely on libc or any other mainstream
libraries. Eventually we will build the OS kernel in Mu as well.
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Mu Translator (section 4)
(written in SubX with syntax sugar)

SubX Syntax Sugar Rewriter (section 3)
(written in SubX without syntax sugar)

Self-hosted SubX Translator (section 2.2)
(written in SubX without syntax sugar)

Bootstrap SubX Translator
(written in C++)

OS kernel
(written in C)

Mu

SubX with syntax sugar

SubX without syntax sugar

ELF binary ELF binary

Figure 1: Building Mu programs. Edges represent languages, while nodes represent tools and indicate the language they’re
implemented in. Most nodes are built in the language they emit (green). Only the self-hosted translator is metacircular (red).
The self-hosted and bootstrap translators emit identical ELF binaries given identical source programs. The clouds highlight
areas that still depend on mainstream software.

At build time, Mu is designed to be parsimonious with its de-
pendencies but also easy for a newcomer to build. It can be built
using two approaches. First, it can be bootstrapped on any Unix-like
platform with a C (and C++) compiler. Second, once a Mu machine
is bootstrapped, Mu can build itself without any further reliance
on C (barring the OS kernel). These two approaches have comple-
mentary strengths and weaknesses; C is relatively familiar but C
compilers have large dependency trees, while Mu as we’ll see later
looks strange but only relies on a few generic OS syscalls and is
easy to audit. Both approaches emit identical binaries, permitting
diverse double compilation [24] to counter the Thompson-Karger
“trusting trust” attack [14, 22].

Figure 1 shows the toolchain graphically and provides an overview
of the rest of this paper. The Mu computing stack provides two
notations: an unsafe notation for machine code (called SubX) and a
type-safe and memory-safe statement-oriented language (epony-
mously called Mu) that mostly translates 1:1 to machine code. In
each notationwe try to do asmuch as possible with localized rewrite
rules (syntax sugar).

2.1 Bedrock: The 32-bit x86 Instruction Set
Currently Mu supports only the Intel x86 instruction set. Portability
is explicitly a non-goal. Portability guarantees require extra effort
to maintain, and can be particularly challenging for newcomers
who may not be inclined to ensure their changes work on platforms
they don’t regularly run. Rather than attempt to fight a losing battle,
we retreat from it entirely.

Mu supports only a regular subset of the entire x86 instruc-
tion set, mostly restricting itself to 32-bit instructions that have
been widely available since 1990. Since we also only rely on a bare
minimum of features from the OS kernel, Mu programs should be
easy to get up and running on any computer people have access
to (though they do currently require access to a Unix for boot-
strapping). Currently we only support integer operations. We will
eventually support a similarly regular subset of floating-point op-
erations.

As Figure 1 shows, at the lowest levels our goal is to come up
with a reasonably ergonomic syntax for x86 machine code that can
be implemented in itself. Given this hard constraint, we don’t try
to abstract over the underlying machine. Programmers working
at this level are exposed to the constraints and complexities of the
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instruction set. Given that, it’s worth taking some time to take stock
of it.

The x86 instruction set is variable-length; instructions may be
anywhere from 1 to 14 bytes long and contain various subsets of
13 different arguments in addition to a variable-length opcode that
designates the operation to be performed. Arguments range in size
from 2 to 32 bits in length, and multiple arguments are often packed
to share a single byte.

It has 8 32-bit registers and 8 overlapping 8-bit registers. It ad-
dresses RAM by byte even though most operations read and write
4 bytes at a time.

It supports the usual complement of instructions: arithmetic or
logical operations, jumps, pushes and pops, function call and return
instructions. Most instructions operate on no more than 2 operands.

It supports a fairly baroque set of addressing modes. Each in-
struction can access at most one memory location. The task of the
addressing mode is to determine operands based on arguments in
the bitfields of an instruction.

2.2 SubX: A Habitable Notation for
Programming in Machine Code

At this point it’s worth taking a step back to think about why
we don’t all program in machine code, at least in place of unsafe
languages. Ignoring aesthetics, there are some essential difficulties:

• Non-textual data is not a good fit for human senses.
• Packing bits into bytes is error-prone.
• A variable instruction set requires path-dependent encod-
ing. Small errors in one instruction can cause later opcodes
to silently be interpreted as arguments and vice versa. Er-
rors may manifest unboundedly far from their root causes,
making diagnosis intractable.

• Computing offsets for jumps is error-prone.
• Various other error conditions can yield terse or cryptic
results.

Given our tight complexity budget for a self-hosted syntax, these
difficulties are our top priorities. To begin, we follow a long tra-
dition (e.g. Edmund Grimley Evans [9]) and write programs in a
hexadecimal representation of ASCII bytes, converting them to
binary before running them. The rest of the stack can now work
with programs as textual representations of numbers.

Metadata: While machine code consists of undifferentiated num-
bers, mixing in some redundant information can help improve
the quality and timeliness of errors. Conventional Assembly lan-
guages do so by creating mnemonics for opcodes and translating
mnemonics and operands into machine code. However, Assembly
mnemonics can often expand to multiple opcodes depending on the
arguments, and translation can get complex. Translating opcodes
can also convolute the logic for good error messages. For example,
Assemblers may need to inform the programmer that there’s just
no instruction in x86 to multiply ecx by edx.

For easy translation and simple but robust error messages, we
work with numbers directly, but append metadata to them after a
slash. Here are some example instructions in SubX, illustrating the
simple and the complex:
c3/return

68/push 4/imm32
0f 82/jump-if-lesser 4/disp32
8b/copy 1/mod/*+disp8 1/rm32/ecx 8/disp8 0/r32/eax

Instructions always occur one to a line. Only the numbers at the
start of each word represent computation encoded in the final bi-
nary. The rest of each word is metadata. In the first two instructions
the metadata is relatively easy to read. The third example demon-
strates an instruction with multiple opcodes. The fourth example
looks up memory at the address in ecx and saves the result to eax.

The SubX translator ignores unrecognizedmetadata. In the above
examples ‘/return’, ‘/push’ and ‘/ecx’ are just comments for hu-
man readers. However, metadata can also affect translation by la-
beling arguments to be processed in different ways. As the SubX
translator processes opcodes, it checks for expected argument la-
bels. For example, it expects the opcode ‘68’ (‘push’) to provide a
single argument and for that argument to be labeled with ‘/imm32’.
Any discrepancies are immediately flagged as translation errors. In
more complex instructions, metadata also permit the SubX transla-
tor to perform the tedious task of packing bitfields into bytes and
ordering them correctly.

Labels: Like Assembly languages, SubX provides facilities for
binding addresses to memorable names using labels that get auto-
matically replaced with either their absolute address or a displace-
ment relative to the current instruction. Labels naming functions
are distinguished. Jumps across functions are illegal, as are calls to
labels within functions.

String literals: One major advance over Assembly languages is
support for string literals. In SubX you can provide a string literal
anywhere an address is expected. The translator creates room for
the string literal elsewhere and replaces the reference to it with its
new address.

Supporting string literals adds some complexity to the SubX
parser and label translation, but they’re deemed essential because
they enable a key feature: automated tests that can give helpful
error messages when they fail. Colocating failure messages next to
their use is essential to self-documenting tests.

Tests: As mentioned above, tests are an essential component of
programming in machine code using SubX, and they’re provided
right from the start. The mechanism for tests is merely a special
function called ‘run-tests’ that is automatically code-generated
for each program. When called, it calls all functions in the program
that start with the prefix ‘test-’. Given this mechanism, everything
else can be built into the vocabulary of functions.

Tests are particularly essential when programming in machine
code because there is no task so simple that I1 get it right the first
time.

Summary: That completes our quick tour of the core of SubX:
hexadecimal numbers, metadata, labels, string literals and an au-
tomatically generated test harness. Figure 2 shows these features
interacting in a larger code sample.

1This paper uses the first person plural to acknowledge collaboration with others on
the Mu project, but the first person singular when referring to its author.
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Figure 2: An example function (in orange, for computing the factorial of an integer) and a test for it (in green), written in the
SubX notation without any syntax sugar. A discipline of tabular organization, label naming and comments at multiple levels
of detail help the human manage complexity.

All of SubX’s features are implemented twice: once in the boot-
strap C++ translator and a second time in the self-hosted transla-
tor written in SubX. All these mechanisms were straightforward
enough that the two translators are able to stay in sync over a
year, build programs reproducibly, and emit identical binaries given
identical sources.

The C++ translator requires less than 3k LoC (including com-
ments, whitespace and tests). The self-hosted translator is built
as a pipeline of phases, each reading from ‘stdin’ and writing to
‘stdout’. Each phase is small and includes thorough automated
tests to aid comprehension. From the bottom up:

• hex: converts hexadecimal bytes into a binary file. 1400 lines
of SubX, 150 excluding comments and tests, 5KB binary.

• survey: translates labels into addresses, and computes the
ELF header. 5k lines of SubX, 900 excluding comments and
tests, 10KB binary.

• pack: combines bitfields into bytes. 6k lines of SubX, 840
excluding comments and tests, 7.5KB binary.

• dquotes: translates string literals into labels. 2k lines of SubX,
380 excluding comments and tests, 6.5KB binary.

• tests: code-generates the ‘run-tests’ function. 300 lines of
SubX, 130 excluding comments and tests, 6KB binary.

Line counts above don’t include the common vocabulary of func-
tions, but its usage is reflected in binary sizes. One caveat with
the self-hosted translator: it currently provides no error-checking.
We currently rely on the C++ translator for good error messages.
Development so far has focused on build- and run-time tools; the
development environment will also eventually be ported over.

All told, we’ve written some 40k lines of machine code using
the SubX notation. The crucial hypothesis in designing it was that
the implementation properties of parsimonious dependencies and
minimal metacircularity trump superficial aesthetics of the syntax.
Experience shows that while it may look strange at first, especially
when read passively, it’s easy to comprehendwith a tight interactive
loop of making changes and rerunning tests.
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Figure 3: Screenshot of the trace browser for time-travel debugging. Top: some instructions executed, along with a highlighted
‘cursor line’. Bottom: the screen after drilling down into the cursor line, revealing details about the ‘call’ instruction as well
as the instructions executed in the callee (lighter background color). The leftmost column shows the depth of each line.

2.3 Debugging SubX Programs
While it is relatively painless to gain fluency in SubX, debugging
programs in machine code remains challenging. The computational
substrate is fundamentally unsafe; the only error messages available
are the ones that were manually added. Mu’s minimal ELF binaries
don’t include any debugging information. Instead of relying on
interactive debuggers, SubX relies on some unconventional tools.

Emulation. Before we built the SubX translator, we first imple-
mented an emulator in C (7k LoC) for the subset of x86 machine
code supported by SubX. Emulating ELF file loading and instruction
execution provides the opportunity for greater error checking.

Traces and time-travel debugging: Emulated runs can be config-
ured to emit a trace of instructions as they are executed, including

after each instruction the state of registers and symbolic labels
as they are reached. Traces cheaply provide the benefits of time-
travel debugging, allowing us to step forwards or back through a
program’s execution at will.

Traces can get quite voluminous. To help slice and dice them we
annotate each line of the trace with a ‘depth’, and use a trace browser,
a zoomable UI in text mode that folds away instructions at lower
depths. This setup allows us to hide the details inside function calls
and individual instructions. The trace browser allows us to gain an
overview of a run and selectively drill down as needed. Figure 3
demonstrates the trace browser and a drill-down operation.

Watch points: While traces emit register state after each instruc-
tion, it’s prohibitive to emit the contents of memory. To answer
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Figure 4: The function and test of Figure 2 rewritten to use
syntax sugar for addressing modes.

questions about when a location was last modified and by whom,
we use watch points. As it executes instructions, the SubX emula-
tor monitors for labels that start with a ‘$watch-’ prefix. When it
encounters one, it saves the computed effective address and starts
emitting its value after every time step. This instrumentation al-
lows us to determine, for any point in the trace, the call stack of
the instruction that last modified any watched address.

Summary: One attribute these techniques share is a high “power-
to-weight ratio”. They take very little code to implement, and once
implemented they are robust and work reliably. The key skill when
using them is one familiar to anyone used to debugging by inserting
‘print’ statements: to not be afraid to modify the program as we
debug it. A little extra time spent tuning the trace can cause most
bugs to become obvious. Tools to scale up debug-by-print seem like
a promising area of further research.

3 SYNTAX SUGAR FOR SUBX
As Figure 2 shows, we give up a lot of syntactic ergonomics when
using SubX. Now that we have a baseline that satisfies the imple-
mentation properties we care about, it’s worth trying to reclaim
some syntactic niceties at low complexity cost. The passes in this
section are no longer implemented in C++, only in SubX. They do
their own error handling.

3.1 Addressing Modes
As we mentioned above, x86 instructions may have up to 13 logi-
cal arguments that help determine up to two operands. The first
operand is specified by providing at most one of 7 arguments, spec-
ifying either a register or a literal encoded in the instruction itself
(/r32, /imm8 /imm16, /imm32, /disp8, /disp16 and /disp32). The
bulk of complexity lies in the second (‘reg/mem’) operand, which
can be specified by various combinations of 7 arguments:

• /mod
• /rm32
• /base
• /index
• /scale
• /disp8
• /disp32

The first bit of syntax sugar follows conventional Assembly lan-
guages and provides a concise syntax for specifying the ‘reg/mem’
operand. Figure 5 shows the grammar for this syntax sugar, with
‘[]’ surrounding optional tokens. Some example expressions:

• %eax
• *edx
• *(esi+4)
• *(eax + ecx<<2 + 8)
• *Total-widgets

Whitespace is permitted within parentheses, but not immediately
after the ‘%’ or ‘*’ sigils. Metadata is not permitted within paren-
theses, so as to keep expressions visually short.

Such expressions are translated using the following 5 rewrite
rules, where words in bold are variables, and ‘N()’ converts a string
register name to its 3-bit code:

(1) ‘%reg’ =⇒ ‘3/mod N(reg)/rm32’
(2) ‘*reg’ =⇒ ‘0/mod N(reg)/rm32’
(3) ‘*Label’ =⇒ ‘0/mod 5/rm32 Label/rm32’
(4) ‘*(reg + disp)’ =⇒ ‘2/mod N(reg)/rm32 disp/disp32’
(5) ‘*(base + index << scale + disp)’

=⇒ ‘2/mod 4/rm32 N(base)/base N(index)/index
scale/scale disp/disp32’

Armed with this syntax sugar, we can now rewrite the code of
Figure 2 into Figure 4. Tabular organization is no longer required.
Implementing this syntax sugar requires 4.6k lines of SubX, 900
excluding comments and tests, and the resulting binary is 9KB
large.

3.2 Function Calls
The new syntax for addressing modes now enables a nice syntax
for function calls. In raw x86 (assuming a relatively standard calling
convention), function calls require pushing arguments on the stack,
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reg/mem ::= direct | indirect | offset | indexed | constant
direct ::= ‘%’ register
indirect ::= ‘*’ register
offset ::= ‘*(’ register ‘+’ disp ‘)’
indexed ::= ‘*(’ register ‘+’ index [‘<<’ scale] [‘+’ disp] ‘)’
constant ::= ‘*’ label
register ::= ‘eax’ | ‘ecx’ | ‘edx’ | ‘ebx’ | ‘esp’ | ‘ebp’ | ‘esi’ | ‘edi’
label ::= non-register identifier
disp ::= 32-bit integer
scale ::= 2-bit integer

Figure 5: Grammar for addressing-mode syntax sugar.

performing a ‘e8/call’, and then popping the arguments off the
stack. (Results are typically returned in registers.)

x86 has an instruction to push a ‘reg/mem’ operand, which allows
us to rewrite a syntax like this:

(find-next %eax "/" 3)

...into this:
# push args in reverse order
68/push 3/imm32
68/push "/"/imm32
ff 6/subop/push %eax
# call
e8/call find-next/disp32
# pop args
81 0/subop/add %esp 0xc/imm32

Observe the clean composability of string literals, addressing mode
expressions and numbers. The only minor details here are selecting
the right push opcode for literals vs non-literals, and computing
the number of bytes to pop off the stack.

Armed with this syntax sugar, we can now rewrite the code
of Figure 4 into Figure 6. Low-level comments in grey now turn
rare. Implementing this syntax sugar requires 1.8k lines of SubX,
450 excluding comments and tests, and the resulting binary is 7KB
large.

3.3 Structured Control Flow
The final bit of syntax sugar that seems to provide a high power-
to-weight ratio is the elimination of unstructured jumps in favor of
structured conditionals and loops. Assembly languages either don’t
provide syntax for structured control flow, or carve out exceptions
to their statement-oriented nature to support recursive syntax.
SubX does neither, but instead supports a simpler syntax that sticks
to the statement-oriented nature of the underlying machine. The
conventional syntax for a conditional:

if (%eax == 0) {
...

}

...is expressed in SubX as:
{

81 7/subop/compare %eax 0/imm32
75/jump-if-not-equal break/disp8
...

}

Figure 6: The function and test of Figure 4 rewritten to use
syntax sugar for function calls.

Each ‘break’ label is translated into the location of the containing
‘}’. Similarly, the conventional syntax for a loop:

while (%eax == 0) {
...

}

...is expressed in SubX as:
{

81 7/subop/compare %eax 0/imm32
75/jump-if-not-equal break/disp8
...
eb/jump loop/disp8

}

The ‘loop’ label is translated into the location of the containing ‘{’:
_loop1:

81 7/subop/compare %eax 0/imm32
75/jump-if-not-equal _break1/disp8
...
eb/jump _loop1/disp8

_break1:
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Figure 7: The function and test of Figure 6 rewritten to use
syntax sugar for structured control flow.

The SubX translator ensures that curly brackets are balanced, and
replaces each matching pair with a unique pair of label names.

Armed with this syntax sugar, we can now rewrite the code of
Figure 6 into Figure 7. Labels now become rare. Implementing this
syntax sugar requires 360 lines (using syntax sugar for function
calls), 120 excluding comments and tests, and the resulting binary
is 6KB large.

Summary: This concludes our tour of SubX, spanning the core
notation as well as syntax sugar. To translate SubX programs into
ELF binaries, we pass them through a shell pipeline composed of
all the phases outlined so far:

cat $* |braces |calls |sigils \
|tests |dquotes |pack |survey |hex > a.elf

Except for the bootstrap 3kLoC C++ translator, the entire stack and
any programs running on it require zero external dependencies
for building. Only a minimal Unix-like OS kernel is required for
running.

4 MU: A LOW-LEVEL YET TYPE-SAFE AND
MEMORY-SAFE LANGUAGE

SubX helps us minimize dependencies on mainstream software. In
this section we describe how we build on SubX to obtain a memory-
safe language: Mu. Since we now have a fairly habitable [5] notation,
we can expand our ambitions a bit. However, we’re still fairly par-
simonious in the features we introduce since the implementation
language is unsafe.

Mu’s trajectory follows that of early C to some extent; both
languages were implemented without a high-level language, and
so implementation simplicity was important. However Mu learns
from the trajectory of C, where compilers became metacircular at
the first opportunity, and the availability of a high-level language
for implementation has caused ever-smarter compilers, at the cost

Figure 8: An example program in Mu’s safe language.

of explosive growth in compiler complexity. We don’t want to make
the same trade-off.

To avoid ever needing a complex compiler, Mu is designed to
never need any compiler optimizations. It achieves this aim by
staying as close to the machine as possible (without compromising
memory safety). In particular, we aim as far as possible for each
statement of safe Mu to expand to a single instruction of unsafe
SubX.

One consequence of aspiring to a 1:1 mapping with machine
code: we don’t abstract away registers. Since x86 machine code
constrains instructions to no more than one memory operand, it
makes sense to make programmers manage registers explicitly.
We’ll still verify the register allocation, as described below.

4.1 Syntax
Figure 8 shows a small example program in the safe language Mu.
Just like in C, programs are sequences of function, type and global
variable declarations. Variable definitions put the type after the
name, separated by a ‘:’. They may also specify a register that the
variable occupies, separated by a ‘/’. Variables not in a register will
be placed in memory.

Figure 8 illustrates a few constraints, mostly imposed by the
x86 processor. Functions must always get their arguments on the
stack, and must always return results in registers. The registers
they return their results in are part of their signature, and every
call must conform to such constraints. Some primitives (such as
‘get’ here) can return results in arbitrary registers. No primitive
can operate on more than one variable in memory. Remaining
operands must be in registers. We have special instructions for
accessing members of records (‘get’) and arrays (‘index’). Even
though they may translate to the same opcodes under the hood,
giving them separate names helps document intention and enforce
type-correctness. Conversely, the ‘compare’ instruction translates
to different opcodes depending on whether the first or the second
instruction lies in memory. (We continue to use SubX’s scheme
for structured control flow, abstracting the opcodes as ‘break’ and
‘loop’ instruction families rather than labels.)
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4.2 Type System
Mu has a strong but unambitious type system. The only goal is
to avoid the memory corruption issues that plague the level be-
low. Type-checking happens in a pass between parsing and code-
generation, and for the most part consists of matching types be-
tween the left and right hand side of instructions. When the instruc-
tion is a function call, the type-checker takes the function signature
into account. When the instruction is a ‘get’, the type-checker takes
the record definition into account.

Individual instructions impose their own constraints on the types
they require. For example, while the underlying SubX opcodes allow
any two values to be added together, Mu enforces that the ‘add’
instruction can only operate on and yield ‘int’ values.

The ‘index’ instruction always performs bounds-checking at run
time; this constitutes an exception where a Mu statement requires
more than one SubX instruction to implement.

Types can be compound, and we express them as s-expressions,
for example ‘(array int)’. An ‘index’ instruction on a variable
of type ‘(array point)’ yields an output of type ‘point’.

Mu will have sum types or tagged unions; some superficial syn-
tactic details remain to be finalized, such as the choice of keywords
for defining and reading them.We’re also trying to integrate Ceylon-
style [17] anonymous union types like ‘int|err’.

4.3 Variable Declarations
SubX creates space for local variables using ‘push’ instructions,
and reclaims them using either ‘pop’ instructions or by updating
the stack registers. In the safe language we disallow the ‘push’ and
‘pop’ instructions, as well as direct access to the ‘esp’ and ‘ebp’
registers that manage the stack. Instead, the ‘var’ keyword updates
the stack pointer based on the type of the variable being declared,
and all local variables are reclaimed at the next enclosing ’}’.

# variable on stack; no initializer allowed
var x: int

# variable in register; must be initialized
# with a valid instruction
var x/eax: int <- copy 0

All variable declarations automatically initialize their underlying
memory at run time (arrays and strings are prefixed with a length)
and automatically reclaim it when exiting their block; this consti-
tutes a second exception where a Mu statement requires more than
one SubX instruction to implement.

4.4 Addresses
A key aspect of memory-safety is managing addresses. Addresses
can be used for three purposes: to reduce copying, to alias variables,
and to manage long-lived variables on the heap. In Mu we try to
separate these intentions as far as possible using two address types:
‘addr’ and ‘handle’. Functions arguments with type ‘addr’ indicate
call by reference. Figure 9 shows how Figure 8 would be modified
to accept its arguments by reference.

Values of type ‘addr’ are intended to be short-lived. They cannot
be saved inside user-defined types. To preserve safety, Mu tracks
functions that could reclaim memory and raises an error if an ‘addr’
variable’s lifetime intersects with any memory reclamation.

Figure 9: Figure 8 modified to operate on aliases of its argu-
ments.

Figure 10: A more complex translation with variables and
control flow.

The second address type is the ‘handle’. It is the result of a heap
allocation, and it’s the only kind of address that can be saved inside
a user-defined type. Handles are fat pointers; they include an allo-
cation id [18] that is also present in their payload. Handles can’t
access their payload directly; they must first be converted to an
‘addr’ using the ‘lookup’ instruction. The ‘lookup’ instruction con-
stitutes the third and final exception where a Mu statement requires
more than one SubX instruction to implement. On every ‘lookup’
instruction, Mu compares at runtime the allocation id of the handle
with the allocation id of the underlying payload. A mismatch in
allocation id indicates an attempt to access memory that has been
reclaimed, and causes the entire program to abort. Aborting imme-
diately on an attempt to corrupt memory prevents many security
vulnerabilities and simplifies debugging when compared to C.

4.5 Blocks
SubX simulates blocks using ‘{’ and ‘}’ labels. Mu makes such
blocks real syntactic entities that are safe to use. Any variables
declared within a block are always reclaimed when exiting it. For
example, code like this:

{
var x: int
...

}

is translated to SubX code like this:
{

68/push 0/imm32 # allocate
...
81 0/subop/add %esp 4/imm32 # reclaim

}

Register variables also require similar stack management, this time
to save any shadowed variables and restore them on block exit.
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While the above rewriting reclaims variables when getting to
the bottom of a block, we also need to handle early exits using
the ‘break’ and ‘loop’ instructions. Figure 10 shows an example of
such a translation.

Mu is designed to ensure that any live registers entering a block
were written to as the same variable. It also ensures that live reg-
isters entering any loop blocks (loop-carried dependencies) were
written to as the same variable when exiting the loop block. These
two checks suffice to validate the manual register allocation per-
formed by the programmer.

Between initializing memory, validating registers and handling
early exits, the interplay between blocks and variable declarations
is the most complex sub-system in the Mu translator.

Summary: Between this section and the last, I’ve now finished
describing all of the Mu stack at a fairly low level of detail. I hope I
have demonstrated that one can get approximately to the level of
C (lower expressiveness but higher safety) with a modest outlay of
code and external dependencies, and that it is possible to explain
how it all works in a matter of a dozen pages.

5 REIFYING INTENTION
While we now have a stack that fits in a single person’s head, it’s
not yet a fair comparison with mainstream software because all
software starts out small and simple. We wouldn’t want to pit the
quality of Mu against that of early C and Unix implementations.
Might Mu too grow bloated and complex over say a decade, par-
ticularly in the unlikely event it achieves significant adoption?
Complexity often stems from the arrival of newcomers and the
gradual forgetting of the causes for a design [19]. This section de-
scribes some pervasive mechanisms in the implementation of Mu
to combat complexity creep over time, and to educate people about
rationales at all levels of the stack.

5.1 Error Messages
One source of complexity in mainstream software is the pursuit
of syntax. New notations are often marketed in a ‘dead’ form [23]
like a webpage or book, where one must judge them by how they
look, without interacting with them in any way. The need for such
marketing in turn drives the design of surface syntax. I think much
of this pursuit is misguided:

(1) Design effort spent on surface syntax comes at the expense
of other considerations.

(2) Syntax often requires relatively non-leaky abstractions, which
increase implementation complexity.

(3) Syntax creates greater impedance mismatch between the
interface exposed to the programmer and the work done for
the programmer. Bridging this gap becomes harder when
tools must communicate with the programmer.

Mu explores a contrary approach. It’s designed from the ground
up to minimize impedance mismatch at all levels. As a result, the
error messages are easy to write. We can assume more knowledge
from people, because we front-load education to optimize for the
long term rather than the initial experience. Several design choices
in Mu illustrate this dynamic:

• SubX requires opcodes rather thanmnemonics.Whilemnemon-
ics look like English words and are therefore ‘friendly’ at first
glance, natural language is often misleading when applied to
programming. The instruction ‘add’ has many sharp edges
in Assembly language that the English word ‘add’ fails to
encompass. Using opcodes requires some initial orientation
but, I hypothesize, will provide fewer unpleasant surprises
over a lifetime of use.

• Mu and SubX are statement-oriented and provide minimal
syntax, so that translation steps are tractable to present to
users. The entire toolchain is designed to be transparent,
to mention locations of temporary files, and to encourage
people to look inside them after a compiler error. Develop-
ers who benefit from these features today will hopefully
contribute to preserving them in future.

• SubX’s ability to emulate machine code programs and emit
traces allows error messages to be terse and refer people to
the trace of an execution. Traces and assumptions about a
more active user reduce the amount of infrastructure needed
to present stack frame information on an error.

• Since people are constantly encouraged to browse large
traces using the packaged zoomable UI, the details of how
Mu programs are run are more likely to be in the program-
mer’s mental model, and therefore can be referred to in error
messages.

Arguably the work done so far represents the easy part of the task.
Any high-level expression-oriented language built atop Mu will
need a lot more work to preserve the sense of transparency while
performing more complex transformations on user code. Initial
experience, however, is promising. Where modern compilers grow
more complex and so need to manage more state for error messages
which in turn causes greater complexity, Mu shows that transparent
implementations can cause people to understand details and so
require simpler error messages.

5.2 Testable Interfaces
Conventional wisdom today is that automated tests are important.
Conventional wisdom also advises us to test business logic, not I/O.
What about programs that perform lots of I/O? Most programs in
my experience tend to have complex I/O flows, whether they’re
webservers going through multiple levels of proxying, web applica-
tions that need to render on multiple browsers, or desktop software
like text editors. In all these cases the ability to test I/O must be
slowly recreated over time using heavyweight frameworks like
Selenium. In spite of all our efforts, tests don’t detect all possible
failures, as evidenced by the pervasive use of manual certification,
release candidates and canarying when deploying programs.

I argue that the conventional wisdom to test business logic, not
I/O is a consequence of OS interfaces that predate the modern
emphasis on tests. If our OS interfaces were designed to be testable,
testing I/O would be as lightweight as any other kind of test.

While Mu doesn’t yet implement an OS kernel, it wraps conven-
tional OS syscalls to research the benefits of more testable interfaces.
Our key pillars are dependency injection and fakes. For example,
printing to screen shouldn’t be written as:

print("hello")
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It should be written:
print(REAL_SCREEN, "hello")

Explicitly passing in an identifier for real hardware now allows the
interface to support passing in fake hardware in automated tests.

Unix’s insistence on everything being a file is a hindrance here.
We don’t even have a syscall to print to screen! SubX’s lowest-level
helpers for writing to ‘stdout’ accept either a file descriptor or a
stream object. As a result, Mu’s tests pervasively write to a stream
and then check its contents to validate results.

A previous prototype went much further than this. Figure 11
summarizes the modalities that we have researched in the past, and
the best interfaces we were able to design.

Muchwork remains here.WhenMu eventually gets an OS kernel,
we’ll need testable interfaces not just for high-level abstractions
like a hard disk but also for internal details like disk buffers. They
will have to permit encoding a wide variety of intentions, such as
what exactly we would like to happen when, say, a ‘sync()’ syscall
is executed. Under what circumstances will a computer lose data?
Unix makes this question hard to reason about.

Not all interfaces to the OS are syscalls. We’d like to be able
to simulate a context switch between two specific instructions, or
run the component under test in a sub-process that we can then
interrupt at will to check if it’s blocked waiting on input from a
specific channel (e.g. the keyboard). Again, we have some high-level
answers here in the context of a virtual machine, but need more
work to arrive at the right interface on a real system.

5.3 White-Box Tests
A second bit of conventional wisdom around testing is to test only
what can be robustly tested. As a consequence, mainstream soft-
ware doesn’t write automated tests for performance. Mu’s traces
help here. So far we’ve only discussed traces of machine code in-
structions run in the emulator (Figure 3), but all Mu programs emit
a trace, a versatile append-only in-memory log of structured facts
deduced about the domain during the course of a program. Au-
tomated tests can now inspect the trace and check not just the
final result but also that it was deduced in the correct manner. This
approach gives us two benefits:

(1) We can now write stable and robust tests denominated in the
units of our choice. For example, a ‘sort’ function may emit
an event to the trace on every swap, thereby permitting a
performance test to check that doubling the size of the input
doesn’t cause the number of swaps to quadruple. Traces are
useful not just for performance, but for say testing that a
triangle is visible in a graphics pipeline, or that a failover
occurred correctly when the master crashed in a distributed
system.

(2) We can now write fine-grained unit tests without making
assumptions about architecture. For example, Mu’s parser
emits tokens to the trace. Tests run not just the parser but
all of the translator and check just the events in the trace
labeled under the namespace of the parser. Arranging the test
in this manner gives us the flexibility to radically reorganize
the translator, moving to a parallel or lazy parsing imple-
mentation. Conventional tests would need to be rewritten in
such situations. With traces they don’t. (Mu is helped here

by having lightweight fake hardware that allows integration
tests to run almost as fast as unit tests.)

We aren’t just treating the component under test as a black box but
inspecting its internals. In combination with testable OS syscalls,
white-box tests can check that a function doesn’t allocate memory,
or that an email is sent even if the disk is full, or that a function
doesn’t block on I/O, or that a context switch at a specific point to
a specific process doesn’t cause a data race.

5.4 Cherishing Forks
Most software today is on a trajectory of ever-increasing complexity.
Features are rarely deleted. Over time complexity invariably reaches
a threshold where new features take longer and longer to add. At
this point the project becomes much more selective about adding
new features. The result of this trajectory is that early users have a
huge impact on the feature set of a program, often long after they
stop using it! Compatibility, while useful in moderation, has over
time the effect of ossifying all the degrees of freedom.

Much of this trajectory stems from people’s reluctance to modify
software, a tendency Mu works hard to counteract. Given a stack
that is easy to understand, it’s worth revisiting the value of com-
patibility. If people can modify a project for their needs, the next
step is to start deleting features they don’t use. In the process they
can reclaim vitality that has ossified under a “high feature load”.

This hypothesis remains untested so far. Mu has no forks yet. But
the intent is to be extremely encouraging of forks, and to help them
take on an independent existence. Normally features the original
authors don’t like tend to languish. If forks become easy to create,
then it’s easy to spin off forks, and to direct demand for specific
features to specific forks. Managing changes between long-lived
divergent forks is an open problem, but I suspect its difficulty is
over-rated.

5.5 Summary
I’m more certain of this section than any other in this paper. Even
if Mu’s specific architectural choices turn out to be wrong, the
mechanisms of forks, traces, abstraction-friendly OS interfaces
and abstraction-hostile error messages seem compelling for Illich’s
agenda of promoting conviviality and managing the complexity of
our software supply chains.

6 CONCLUSION
Before I built a wall I’d ask to know
What I was walling in or walling out. . .

Robert Frost
Among programmers there’s a long-standing lament about the
excessive complexity in software projects. Ivan Illich points out that
this tendency towards complexity isn’t restricted to software, but
rather stems from sociopolitical causes: the need to structure society
with certain specialization and compatibility constraints. Given
these constraints, Conway’s Law [4] takes over. The complexity of
our software infrastructure largely reflects the complexity in our
social arrangements.

The original sin is to try to decompose a system into an “inside”
and an “outside”. While the instinct is laudable, it invariably leads
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syscall new dependency injected fake for the dependency
print() screen 2D array of characters
getchar() keyboard byte stream
exit() opaque descriptor continuation
socket calls resources map from URLs to contents
read() file system map from URLs to contents

Figure 11: Some planned syscalls for the Mu computer.

to specialization. Repeat it over and over, and the number of such
boundaries compounds, constraining us all.

What is to be done? Mu attempts a high-risk maneuver I think of
as “Conway’s Law in reverse”. We stubbornly refuse to provide the
usual dichotomies of inside vs outside, and by this means hope the
benefits of this approach (if they exist) cause society to consider it,
with a very slow cascade of consequences resulting in a competing
social arrangement.

This paper has demonstrated Mu deconstructing the dichotomy
between “inside” and “outside” on 6 different levels:

(1) By selecting notations at the lowest level for implementa-
tion properties (minimal dependencies, simple dependency
graphs) rather than clean interfaces.

(2) By using traces to show details rather than modules to hide
details.

(3) By making tests white-box rather than black-box.
(4) By encouraging the distribution of whole computers rather

than packages.
(5) By encouraging users to fork open source software rather

than submit to a centralized governance process.
(6) By optimizing for learnability rather than familiarity.

In the process, we’ve taken on some risks. Mu programs are aesthet-
ically unappealing. Debugging may be harder with this approach.
Mu makes new kinds of errors possible: traces that lie about what a
program did, opcodes that are easy to mistype so they don’t match
their metadata, and so on. But if we truly believe that the software
development process should prioritize comprehension over ease of
authorship, it’s worth exploring what we gain by taking on these
drawbacks.

While Mu’s build and runtime environment is fairly independent
of mainstream software, it still relies on a host machine for the de-
velopment environment. Tools like the emulator and trace browser
require C++, as does getting error messages during development.
Over time these tools will be reimplemented in Mu.

Higher-level languages and tools may require greater complexity
to implement. If we can’t keep them comprehensible, we’ll keep
them out. High-level features provide flexibility and are particularly
useful for prototyping. We will let mainstream software support
prototyping use cases, and focus Mu’s niche on converting proto-
types into sustainable personal infrastructure.

The presence of run-time checks may well result in a stack that
is slower than the mainstream, in spite of the performance benefits
of streamlining the stack vertically (fewer layers) and horizontally
(more forks, less complexity per fork). Even if it’s slower, it’s worth
questioning what speed buys us. Unconstrained growth in perfor-
mance is a political and economic goal for those selling computation

by volume. If we each had one computer to truly call our own, truly
running for our benefit, would it really run at full throttle day in
and day out? Our experience with Mu suggests that it might be
better to treat performance—and much else that we tend to obsess
over—as something to satisfice rather than optimize.

Creating an entire new stack may seem like tilting at windmills,
but the mainstream Software-Industrial Complex suffers from obvi-
ous defects even in the eyes of those who don’t share our philoso-
phy. Projects tend to accumulate inertia and slow down over time.
Security is a constant concern, and review is lacking in spite of
source code being increasingly open and available. Vulnerabilities
when found often have a high blast radius. These problems seem
foundational, and they are reasons for anyone to explore starting
anew [11].
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